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Abstract—In this paper, we investigate the request routing de-
lay of opportunistic routing for cache-enabled wireless networks
considering uncorrelated and temporally correlated wireless
channels. We model wireless channel variation at different time
scales via two approaches—i) an abstract modeling approach
where we model the variation considering Rayleigh fading
and shadowing channel models, and ii) an empirical approach
where the variation is modeled directly using signal strength
measurements. We develop Markovian models to analyze the
performance of opportunistic forwarding, leverage the wireless
channel models to determine the packet transmission success
probabilities and then utilize them to obtain the request routing
delay. We first perform numerical experiments and simulations
considering Rayleigh fading and shadowing channel models and
then conduct a trace-based evaluation using signal strength
measurements collected over a wireless sensor network testbed.
Our experiments demonstrate the validity and effectiveness of
our Markovian model in determining the request routing delay
in real-world settings. Our work takes a step forward in providing
network operators a tool for analyzing network performance
before deploying their networks.

I. INTRODUCTION

To address the explosive growth of mobile wireless traffic
in recent years, content caching at storage-enabled in-network
nodes has been proposed [13], [20]. By placing content at
in-network nodes, requests for content can be served from
en route caches in addition to the content custodian (origin
server), thus improving user performance. Alongside this
increase in data access traffic, recent years have also seen
the emergence of various forwarding strategies that exploit the
broadcast nature of the wireless medium [1], [17]. In a wireless
network, when a node transmits a packet, multiple nodes in its
vicinity can receive a copy of it and can participate in forward-
ing the packet toward the destination. A popular forwarding
strategy is opportunistic routing. In opportunistic routing, if
several nodes receive the same packet, an appropriate relay is
selected for the next transmission of that packet.

In this paper, we analyze the request routing delay in cache-
enabled wireless networks that forward requests following an
opportunistic routing policy. Analyzing the performance of
opportunistic routing in wireless cache networks is a relatively
unexplored domain. Existing work related to our research
can be separated into two categories—i) work related to
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opportunistic routing, ii) work related to caching or content
placement. Most work in these two categories has primarily
focused on developing novel opportunistic routing policies or
designing better caching or content placement strategies, while
performance analysis of opportunistic routing or caching poli-
cies in wireless settings considering realistic channel models
has received limited attention.

In this paper, we consider cache-enabled wireless networks
(e.g., cache-enabled heterogeneous networks, ad hoc networks,
mesh networks, D2D networks) where users send requests for
content that is always available at a content custodian, but
may also be present at multiple in-network caches. We assume
that the network uses a simple greedy opportunistic routing
strategy to forward requests for content from users [1], [4]. In
greedy opportunistic forwarding, if multiple nodes receive the
same copy of the request, the node closest to the custodian
forwards the request.

To investigate the performance of opportunistic routing in
wireless cache networks, we model the wireless channel as a
good-bad channel. A request transmission is successful if the
channel is in the good state and unsuccessful otherwise. Prior
work [28], [29] has demonstrated that a good-bad channel is
an appropriate model to capture the successful/unsuccessful
transmission of packets for temporally uncorrelated and cor-
related wireless channels, the two channel models we consider
in our analysis. We describe these two models next.

i) Temporally uncorrelated wireless channels, where the
channel state obtained for each request transmission is
independently and identically distributed.

ii) Temporally correlated wireless channels, where the chan-
nel state transitions are modeled as a Markov chain.

Depending on the environment and the time scale at which
the request transmissions occur, different channel models
can be adopted to capture these variations. We model the
received power variations over the channel using i) a Rayleigh
fading channel model where the received power is modeled as
an exponentially distributed random variable. For correlated
channels, the temporal correlation is modeled as a modified
Bessel function of the first kind and zeroth order and the state
transition probabilities of the Markovian model are derived
based on [28], [29]. ii) a shadowing channel model where the
impact of shadowing on received power is modeled as a log-
normally distributed random variable. For correlated channels,
we model the autocorrelation function as being exponentially
distributed and leverage it to design a good-bad Markovian
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channel model and determine the transition probabilities [19].
iii) an empirical approach, where the probabilities are calcu-
lated by directly measuring the changes in signal strength for
both uncorrelated and correlated channels.

We design Markovian models to analytically determine the
request routing delay for greedy opportunistic forwarding for
the single flow case (i.e., satisfying requests for content from
a single user to the custodian) for both uncorrelated and
temporally correlated channel models. We derive expressions
for the transition probabilities of the Markov chain for both
scenarios and use them to determine the request routing delay.

We first conduct numerical experiments and simulations
considering Rayleigh fading and shadowing channel models
and then conduct a trace-based evaluation on publicly available
signal strength measurement traces collected over a wireless
sensor network testbed [10] to validate the usefulness of our
Markovian models and to draw valuable insight into network
performance. Our experiments show that the simulation and
numerical results match closely for Rayleigh fading and
shadowing channels as well as real-world signal strength
measurements, which demonstrates the effectiveness of our
Markovian model.

As expected, we observe that the request routing delay
decreases as the cache capacity at individual nodes increases.
Interestingly, we observe that benefit of caching is higher at
lower values of packet success probability, primarily because it
is easier to reach an in-network cache instead of the custodian
in a few transmissions. We also observe that the delay of op-
portunistic routing increases as channel correlation increases.
The main reason is that in case of correlated channels, while
opportunistic routing requires a node to transmit multiple times
over a poor channel to get the request through to downstream
relays, it fails to take advantage of good channel conditions.
This is in contrast to the uncorrelated case, where nodes get
independent channel quality in different time slots.

The rest of the paper is organized as follows. We begin
with a discussion of related work in Section II. We outline
the network model and problem statement in Section III and
then present the wireless channel models in Section IV. The
Markovian model designed for analyzing the request routing
delay is described in Section V. We present numerical and
simulation results as well as experimental results on real-world
signal strength measurements in Section VI. We conclude the
paper with an outlook toward future work in Section VII.

II. RELATED WORK

Our current work builds on our prior work [4], [18]. In [4],
we only consider uncorrelated fading channels and compare
the performance of opportunistic and cooperative routing
strategies. In [18], we consider correlated fading channels
and analyze the performance of greedy opportunistic routing
for a simple four node network. In contrast to our previous
work, the main difference in this work is that we consider
the presence of in-network caches and consider uncorrelated
and correlated fading and shadowing channel models [19],
[28], [29] to analyze the performance of opportunistic request
routing of a single flow in a general network. We also test

the efficacy of our models on signal strength measurements
collected over a wireless sensor network testbed. We note that
presence of in-network caching adds a new dimension to this
problem because a request can be satisfied by network nodes
in addition to the custodian.

We next outline research related to opportunistic routing and
caching in wireless networks and contrast it with our work.
Chakchouk identifies different classes of opportunistic routing
policies namely, geographic, link-state-aware, probabilistic,
optimization-based and cross-layer [3]. Apart from traditional
networks such as mesh and ad hoc [1], [4], [17], [18], recently,
opportunistic routing has also been applied to new domains
such as vehicular and underwater networks [7], [15]. The
opportunistic routing policy analyzed in this paper is a greedy
opportunistic routing strategy that combines ideas from both
geographic and link-state-aware routing. In comparison to our
work, most existing work related to design and analysis of
opportunistic routing policies consider uncorrelated wireless
channel models [5], [6], [8], [21].

Kim et. al propose a general framework for accurately cap-
turing link correlation [14] by leveraging Signal to Interference
plus Noise Ratio (SINR) whereas [27] takes a step further in
proposing a model with the ability to predict link correlation
in low power wireless networks. Wang et. al [23] design an
opportunistic routing scheme that improves performance by
exploiting the diversity of low correlated links. Additionally,
a recent work [22] has shown that on expectation, link
correlation-aware opportunistic routing policies perform better
than link correlation-unaware opportunistic routing policies,
thus, increasing the utility in analyzing opportunistic routing
amidst channel correlation.

Analyzing the performance gains of in-network caching
for opportunistic forwarding in wireless networks is limited.
Most work related to caching in wireless networks focus
on heterogeneous cellular networks comprising of a cellular
infrastructure and few cache-enabled femtocells [9], [20], [25].
The primary goal in these papers is to find the best content
placement strategy to minimize delay subject to some network
constraints. In contrast to prior work, our goal is not to propose
a new opportunistic routing strategy or to find the optimal
content placement in a network, but rather to develop models
to analyze the performance of wireless cache networks con-
sidering uncorrelated and correlated wireless channel models.

III. NETWORK MODEL

We consider a stationary wireless network of N nodes
consisting of a single user r1, a content custodian rN and
N − 2 cache-enabled nodes in between as shown in Figure
1. N thus denotes the set of all nodes. We assume that r1

periodically sends requests for content that is permanently
housed at rN . Without loss of generality, we assume that the
network nodes are numbered in terms of the distance from
rN , and that r1 is located farthest away from rN . Therefore,
{r1, r2, ....rN−1, rN} denotes the ordering of the nodes in
terms of their distance from rN , and is known apriori. We
denote the distance between any two nodes ri and rj by dij .
Figure 1 also shows the possible transmission probabilities
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Fig. 1: An N node general network

(p1j or p′1j) between r1 and the other network nodes for
uncorrelated and correlated wireless channels, respectively.

We consider a content universe of size K. We assume that
r1 does not have any local cache, and all other network nodes
except the custodian are provided with a cache of size C
(C < K). We assume that content popularity varies according
to some known distribution (e.g., Zipfian distribution). Let
qi denote popularity of the ith piece of content (i.e., the
probability of the user requesting content i).

We assume that the network adopts some content placement
strategy (i.e., static caching) that determines the set of content
to be placed at the network caches. The literature is rife with
different kinds of content placement strategies [2], [9], [20].
For example, a widely adopted approach is to push popular
content closer to the user so as to maximize performance.

We assume that the network adopts an opportunistic routing
strategy to forward requests from the user to the custodian.
Therefore, there is no notion of a fixed path between the user
and the custodian. Due to broadcast nature of the wireless
medium, nodes can overhear transmissions and can participate
in forwarding the request toward the custodian. We assume
that nodes forward requests based on a greedy opportunistic
routing policy. In this strategy, if multiple nodes receive a
copy of the request, the node closest to the custodian is
always selected to transmit the request. Therefore, the node
ordering {r1, r2, ....rN−1, rN} also represents the priority for
transmitting the request for greedy opportunistic routing. For-
mally, we denote “ri � rj” to represent that ri has a higher
priority than rj . We note that there are several proposals
[1], [17] that address implementation details, such as how
to select the appropriate relay when multiple nodes overhear
the transmission. However, we abstract away these details and
focus on analyzing a simple implementation to appreciate the
benefits of opportunistic routing in a cache network.
A. Problem Statement

Considering the network model described above, we address
the following problem in this paper. For a given content
placement at in-network nodes for a cache-enabled wireless
network, our goal in this paper is to design simple models
to analyze the request routing delay for a greedy opportunis-
tic routing strategy for realistic uncorrelated and correlated
wireless channel models. We next discuss the different wireless
channel models considered in this paper.

IV. WIRELESS CHANNEL MODEL

In order to analyze the performance of greedy opportunistic
routing, we model the wireless channel in a binary manner as

Good

Channel
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Channel

(a) Uncorrelated channel

Good

Channel
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//
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Fig. 2: Wireless Channel Models

a good-bad channel. We assume that a request transmission
between nodes ri and rj is successful if the Signal to Noise
Ratio (SNR) is above a threshold β where β > 0. We
consider both uncorrelated and temporally correlated wireless
channels as shown in Figures 2(a) and 2(b) respectively. For
uncorrelated channels, the channel state obtained for each
request transmission is assumed to be independently and
identically distributed. Let pij denote the probability of a
successful transmission between nodes ri and rj for uncor-
related channels. For temporally correlated wireless channels,
the next channel state is assumed to be dependent on the
current channel state and the state transitions are modeled
as a Markov chain. Therefore, for correlated channels, the
transition matrix capturing this correlation is of the form

M =

[
P [success|success] P [failure|success]
P [success|failure] P [failure|failure]

]
(1)

We denote P [success|failure] by p
′

ij and
P [success|success] as p

′′

ij . In this paper, we consider
that only a single request is in transit between source and
custodian and so we are primarily interested in the probability
p
′

ij . We determine the probabilities pij and p
′

ij analytically
as well as empirically. In the analytical approach, we
model the wireless channel as i) a Rayleigh fading channel,
and ii) a Lognormal shadowing channel. Depending on the
environment and the time scale at which request transmissions
occur, one model might be more suitable than the other. In
the empirical approach, the probabilities are calculated by
directly measuring the changes in signal strength for both
uncorrelated and correlated channels.

For our analytical approach, we model the SNR (Sij) for a
single transmission between nodes ri and rj to be given by

Sij =
LP d−αij
N0

(2)

where N0 is the constant background noise, P the trans-
mitted power at ri, α the path loss exponent, dij the distance
between the nodes and L the random attenuation component
caused due to multipath fading or shadowing depending on
the timescale.

A. Rayleigh fading channel

1) Uncorrelated fading channel: For Rayleigh fading, L
is the Rayleigh fading coefficient and we model it as an
exponentially distributed random variable with mean 1. For
uncorrelated channels, we assume L is independently and
identically distributed (i.i.d) in different time slots. Therefore,
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pij = exp

(
−β N0

P d−αij

)
(3)

2) Correlated fading channel: Temporal correlation in a
wireless channel can occur in scenarios where the coherence
time for a channel is large, thus causing the channel to be
correlated across time slots. We model the fading correlation
as a modified Bessel function of the first kind and zeroth
order [28], [29]. Zorzi et al. demonstrate using an information-
theoretic approach that for a block error process, a Markovian
model is reasonable when fading correlation is taken into
account [28], [29]. This indicates that a success or a failure
of a transmission between a pair of nodes in a given time slot
can be modeled dependent solely on the result of the previous
transmission. From [29], the conditional probability of success
given failure between nodes ri and rj is given by,

p′ij =
Q(θ, ρθ)−Q(ρθ, θ)

exp(bij)− 1
(4)

In equation 4, Q(:, :) is a Marcum Q function, ρ is the
channel correlation coefficient which is given by a modified
Bessel function of the first kind of zeroth order, θ =

√
2bij
1−ρ2

and bij = βN0

Pd−αij
.

B. Shadowing channel

1) Uncorrelated shadowing channel: In case of shadowing,
L is modeled as a lognormally distributed random variable
[16]. Assuming X = log(L), X is modeled as N(0, σ2).
Therefore, pij for a shadowing channel is given by,

pij =
1

2

(
1− erf

(
β
′

σ
√

2

))
(5)

where β
′

= log

(
β N0

P d−αij

)
= log(bij).

2) Correlated shadowing channel: For correlated wireless
channels, we model the temporal autocorrelation of shadowing
to be exponential [12], [24], [26]. An exponential autocorre-
lation function means that shadowing forms an AR(1) process
which in turn means that it can be modeled as a Markov
process [19]. We assume that the entire range of shadowing is
divided into two states Y0 and Y1, where Y0 and Y1 denote the
range of shadowing that indicate transmission failure (X < β

′
)

and success (X ≥ β
′
) respectively. Therefore, p

′

ij for a
shadowing channel is given by,

p
′

ij = P [Xk+1 ∈ Y1 | Xk ∈ Y0] (6)

Following [19], we derive p
′

ij as,

p
′

ij = P [Xk+1 ∈ Y1 | Xk ∈ Y0]

=

∫
Y0

∫
Y1
fXk+1|Xk (xk+1 | xk) dxk+1fXk (xk) dxk∫

Y0
fXk (xk) dxk

=

∫
Y0

(
1− erf

(
β
′
−ρxk

σ
√

2(1−ρ2)

))
fXk (xk) dxk

1 + erf
(

β′

σ
√

2

)
(7)

where ρ denotes the autocorrelation between two successive
samples. We note that when ρ = 0 equation 7 degenerates into
equation 5.

C. Empirical Approach

The transmission probabilities between nodes can also be
determined by performing signal strength measurements at the
receiving nodes. Since the channel is modeled in a binary
manner, successful and unsuccessful transmissions can be
mapped to 1 and 0 respectively. For an uncorrelated channel,
pij can be calculated simply as the fraction between the
number of total successful requests from node ri to rj over
the total number of requests between them. For a correlated
channel, p

′

ij can be computed as the fraction between the
number of successes given a failure in the request stream over
the total number of successes and failures given a failure in
the request stream between nodes ri and rj .

V. ANALYTICAL FRAMEWORK

In this section, we formulate Markovian models for ana-
lyzing the request routing delay using greedy opportunistic
routing in cached-enabled networks for uncorrelated and cor-
related wireless channels. We consider the single request case,
i.e., the user sends a new request only after its previous request
has been satisfied. Each request is initiated by the user and is
forwarded by in-network nodes until it reaches the custodian
or some en route node that has a cached copy of the requested
content. As mentioned earlier, we assume that the set of
content in a node’s cache is determined by a content placement
strategy. Let Hf denote the set of nodes that have the copy
of content f . Note that Hf thus includes the custodian. We
next design the Markovian model and present its transition
matrix for uncorrelated and correlated wireless channels for
the general network considered in Figure 1. However, for the
sake of understanding, we explain the model using a simple
4 node network.

A. Uncorrelated Channel

For constructing the Markovian model, we first consider
the different states in which a network node could be in for
a request in transit. For the uncorrelated channel, each node
can be in two states - 0 and 1. State 1 denotes the state of a
network node if it is going to transmit the request in the next
time slot. State 0 captures two scenarios - i) the node has not
received the request, ii) the node has received the request, but
is not participating in retransmitting this request as some other
higher priority node has also received the same request. For
cases where a cache hit occurs at an intermediate node, we
assume that the content is served immediately. Therefore, as
explained in the four node example below such nodes do not
partake in active retransmission, which subsequently reduces
the state space of the Markovian model.

The set of nodes Hf where the content is available being
dependent on f , we need to construct a separate Markov chain
for each content f . For content f , we denote the state of the
network using an n-tuple that captures the active relay for the
request in the next time slot. For a four node network, the
Markov chain could consist of maximum four states, namely
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A1 = (1, 0, 0, 0), A2 = (0, 1, 0, 0), A3 = (0, 0, 1, 0), and
A4 = (0, 0, 0, 1). A4 denotes the state where the request is
served which could happen if the request reaches the custodian
or some intermediate node that has a cached copy of the
content. Additionally, depending on the set of nodes that cache
a copy of the content, transitions to and from certain states may
not be possible. For example, if we consider that content f is
cached at r3, transitioning to and from state A3 is not possible
because if r3 receives the request, the network will transition
to state A4 as the request has been satisfied. Therefore, one can
remove these states (in this case A3) from the Markov chain
for content f . Recall that we assume that the user transmits
a new request after a request has been satisfied. Therefore,
when the network transitions to state A4, (i.e., the request
is satisfied), the state transition in the next time step will
correspond to the states reachable from the user with the
respective probabilities.

Extending the above logic to a network of N nodes, the
Markov chain will consist of N −Hf + 1 states (Ai, ∀i = 1
to N, ri /∈ Hf − rN ). Having designed the Markov chain, the
next step is to derive its transition matrix. Let P fij represent
the transition from state Ai to Aj , (∀i, j = 1 to N, ri, rj /∈
Hf−rN ) for content f . Equation 8 shows the transition matrix
for the Markov chain described above.

P f
ij =



0 if i > j, ∀i < N∏
rk∈N−Hf

(1− pik)
∏

rk∈Hf

(1− pik) if i = j, ∀i < N

rk�rj

pij
∏

rk∈N−Hf

(1− pik)
∏

rk∈Hf

(1− pik) if i < j, ∀j < N

rk�rj

1−
∏

rk∈Hf

(1− pik) if j = N,∀i < N

p1j if i = N
(8)

B. Correlated Channel

For a correlated channel, we need to take into account the
fact that an unsuccessful transmission of a request by a node
in the previous time slot impacts the probability of successful
transmission in the next time slot. To model this, we consider
that each node can be in three states—0, 1 and 1∗. State 0 is
similar to state 0 for the uncorrelated scenario. State 1 denotes
that a node is going to transmit a request for the first time in
the next time slot, while state 1∗ denotes that a node failed
to successfully transmit a request to any of the higher priority
nodes in the previous time slot and is thus going to transmit
it again in the upcoming time slot.

Once again, we consider a simple four node network to un-
derstand the different states of the Markov chain. The Markov
chain can consist of maximum six states—A2 = (0, 1, 0, 0),
A3 = (0, 0, 1, 0), A4 = (0, 0, 0, 1) and A′1 = (1∗, 0, 0, 0),
A′2 = (0, 1∗, 0, 0), A′3 = (0, 0, 1∗, 0). Every state in the
Markov chain for the uncorrelated channel case except for A1

and A4 (i.e., the states that account for the user transmitting
the request and the request getting satisfied in the network) has
two corresponding states in the Markov chain for the correlated

case. This takes into consideration the fact that a node can be
in state 1 or 1∗ when it serves as an active relay. For example,
states A2 and A′2 denote the cases when r2 transmits a request
for the first time and it retransmits the same request after a
failed attempt respectively.

A4 denotes the state that the request reaches the custodian
or is satisfied by an en route cache while A′1 = (1∗, 0, 0, 0)
denotes the state that the user transmits the request after a
failed attempt. Note that the Markov chain does not need
a state A1 = (1, 0, 0, 0) as it is included in A4. The state
transition from A4 correspond to the states reachable from the
user when it transmits for the first time. Additionally, if the
request transmission from the user to all other network nodes
is unsuccessful, the Markov chain will transition to state A′1.
Therefore, if a state A1 is included in the Markov chain, it
will be unreachable from all other states and its steady state
probability will be zero. Once again, states corresponding to
the nodes that have a cached copy of the content (except the
custodian) are not part of the Markov chain. For example,
if r3 has a cached copy of content f , then states A3 and
A′3 will not be part of the Markov chain. Extending the
above analysis for an N node network, the Markov chain will
consist of 2(N − Hf ) states for content f , (Ai, ∀i = 2 to
N, ri /∈ Hf − rN ; A′i, ∀i = 1 to N − 1, ri /∈ Hf ).

Once again, the next step is to derive the transition probabil-
ities of the Markov chain. Recall that for the correlated channel
case, equations 4 and 7 provide the conditional probability of
successful request transmission in the current time slot given
an unsuccessful request transmission in the previous time slot
between nodes ri and rj . For ease of understanding, we split
the transition probabilities into four separate pairs to cover the
following cases - transitions from i) state Ai to state Aj , ii)
state Ai to state A′j , iii) state A′i to state Aj and iv) state A′i
to state A′j . Equations 9, 10, 11 and 12 show the transition
probabilities for cases i, ii, iii and iv for the correlated fading
scenario for content f respectively. In general, these equations
take care of the fact that transitions cannot take place from Ai
to Aj (except when i < j) or from Ai to A′j (unless i = j
or i = N, j = 1). Additionally, the equations also take care
of fact that transitions to state AN will occur if the request
reaches the custodian or any intermediate in-network cache.

P 1f
ij =



0 if i ≥ j, ∀i < N

pij
∏

rk∈N−Hf

(1− pik)
∏

rk∈Hf

(1− pik) if i < j, ∀j < N

rk�rj

1−
∏

rk∈Hf

(1− pik) if j = N,∀i < N

p1j
∏

rk∈N−Hf

(1− p1k)
∏

rk∈Hf

(1− p1k) if i = N,∀j < N

rk�rj

1−
∏

rk∈Hf

(1− p1k) if i, j = N

(9)
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P 2f
ij =



0 if i 6= j, ∀i < N

0 if i = N,∀j 6= 1∏
rk∈N−Hf

(1− pik)
∏

rk∈Hf

(1− pik) if i = j, ∀i < N

rk�rj∏
rk∈N−Hf

(1− p1k)
∏

rk∈Hf

(1− p1k) if i = N, j = 1

rk�rj

(10)

P 3f
ij =



0 if i ≥ j, ∀i < N

p′ij
∏

rk∈N−Hf

(1− p′ik)
∏

rk∈Hf

(1− p′ik) if i < j, ∀i < N

rk�rj

1−
∏

rk∈Hf

(1− p′ik) if j = n, ∀i < N

(11)

P 4f
ij =


0 if i 6= j∏
rk∈N−Hf

(1− p′ik)
∏

rk∈Hf

(1− p′ik) if i = j

rk�rj

(12)

C. Delay Calculation

Having designed the Markovian models and derived their
transition matrices for the uncorrelated and correlated cases,
we leverage them to obtain expressions for the request routing
delay. Let Πf

i and Π′fi denote the steady state probabilities for
states Ai and A′i for content f respectively. In our model, the
expected delay Df for a request for content f can be calculated
as the inverse of the steady state probability of being in state
AN . Therefore, Df = 1

ΠfN
. Hence, the expected delay D for

both uncorrelated and correlated scenarios is given by,

D =
K∑
f=1

qf
1

Πf
N

(13)

VI. EXPERIMENTAL EVALUATION

In this section, we first present numerical and simulation
results for uncorrelated and correlated fading and shadowing
channels and then conduct a trace-based evaluation on sig-
nal strength measurements collected over a wireless sensor
network testbed to demonstrate that the proposed Markovian
model performs well in a variety of different settings. We
observe from our experiments that the numerical and simu-
lation results match closely that demonstrates the validity and
effectiveness of our Markovian models. We also conduct ex-
periments to study the impact of different network parameters
on delay.

For the results presented here, we assume equidistant place-
ment of nodes. We assume that content popularity varies
according to a Zipfian distribution with skewness parameter
a. We assume that content is distributed according to the

following strategy. We rank content based on popularity. Half
of the cache capacity at each node is filled randomly from
the top 20% content and the remaining capacity is filled from
the bottom 80% content. This ensures that the most popular
content is readily available in the network, but also allows
in-network caching of less popular content.

We use the following default parameters in our experi-
ments: number of network nodes including user and custodian
(N) = 4, cache size at individual nodes (C) = 10, the content
universe (K) = 100, the skewness parameter (a) = 0.8, the
correlation coefficient (ρ) = 0.6 and the standard deviation for
shadowing (σ) = 8. We conduct all experiments in MATLAB
(simulations and numerical analysis) by varying the values of
N , C, K, a, ρ and σ.

A. Experiments for Rayleigh Fading and Shadowing Channels

In this subsection, we compare numerical and simulation
results for Rayleigh fading and shadowing channels. In our
simulations, each data point is obtained over 10 runs of the
experiment. For each simulation run, 10000 requests are sent
from the user to the custodian and the delay is calculated as
the average delay of all requests. Additionally, to take into
account the content popularity in our simulations, we assume
that user issues requests that are independently and identically
distributed according to a Zipfian distribution. Each data point
is then calculated as the average of 10 runs and the error bar
shown around each data point is twice the standard deviation.

1) Closeness of Numerical and Simulation Results: Figures
3 and 4 show the variation in delay with the one hop suc-
cess probability considering i.i.d. uncorrelated and correlated
channels respectively for the default parameters for Rayleigh
fading and shadowing. In these figures, we compare the results
obtained via our numerical analysis and the simulations for
different cache capacities. We observe from these figures that
the numerical and simulation results match closely which
demonstrates the validity and effectiveness of our Markovian
models.

As expected, we observe that the delay decreases as the
cache capacity increases. From a caching perspective, we
observe that in-network caching has greater benefit for lower
values of p. The reason is that for lower values of p, it is
harder to reach the custodian in a few transmissions and thus
having a cached copy of the content closer to the user helps
in satisfying the request earlier. We observe that the delay
decreases as the one hop success probability increases. We
also observe that the delays obtained for shadowing are lower
than fading for uncorrelated and correlated channels. This is
because the transmission probability for fading (equation 3)
is more sensitive to variations in distance in comparison to
shadowing (equation 5). Therefore, the decrease in transmis-
sion probability with increasing distance is higher for fading
in comparison to shadowing.

Interestingly, by comparing Figures 3(b) and 3(c), and
Figures 4(b) and 4(c), we observe that as ρ increases, the delay
increases for the same values of C and p. This is because as
we only model the single request case, greedy opportunistic
routing fails to take advantage of good channel, but requires a
node to transmit multiple times over a bad channel. This need
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(a) Rayleigh Fading (Uncorrelated)
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(c) Rayleigh Fading (ρ = 0.9)

Fig. 3: Rayleigh Fading Channel
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(b) Shadowing (ρ = 0.6)
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(c) Shadowing (ρ = 0.9)

Fig. 4: Shadowing Channel

to transmit multiple times over a bad channel causes higher
values of ρ to have a greater impact on delay, in particular for
lower values of p (p < 0.5).

2) Impact of Network Parameters on Delay: We next inves-
tigate the impact of varying the network parameters on delay
via numerical evaluation that utilizes the Markovian model.
In Figure 5(a), we study the variation of the one hop success
probability as the standard deviation (σ) of shadowing varies.
We identify three classes of β

′
that impact the one hop success

probability very differently. We note that when β
′
< 0, the

one hop success probability (p) is greater than 0.5, and when
β
′
> 0, p is less than 0.5. When β

′
= 0, we observe that

p = 0.5. As σ tends to infinity, p tends to 0.5 for all values
of β

′
. This is also evident from equation 5. The reason is

that when σ tends to infinity, the bell curved nature of the
normal distribution becomes a line, indicating that there are
infinitely many shadowing values that affect successful and
failed transmissions resulting in p = 0.5.

Figures 5(b) and 5(c) represent the variation in delay with
σ. Comparing between Figures 5(b) and 5(c), it is evident that
the delay decreases as the caching capacity increases. From the
figures it is clear that variations in σ have a disproportional
impact on delay with respect to the three classes of β

′

described above. We note that for β
′
> 0, the delay is

highly sensitive to variations in σ compared with the other
two classes. The main reason is that for small values of σ, the
one hop success probability is low in the β

′
> 0 regime, thus

resulting in high values of delay. The figure also demonstrates
that if β

′ ≤ 0 (i.e., p ≥ 0.5), then the overall performance is
robust to changes in σ. We also observe that as σ increases,
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Fig. 7: Delay vs. Number of Nodes (N )

the delay decreases and increases in the β
′
> 0 and β

′
< 0

regimes respectively. The primary reason is that as σ increases,
the value of p decreases and increases to 0.5 for β

′
> 0 and

β
′
< 0 respectively (as evidenced in Figure 5(a)).
Another important inference that one can make from the

figures is that there is less utility in employing opportunism in



0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2018.2880158, IEEE
Transactions on Vehicular Technology

8

0 20 40 60 80 100

 (dB)

0

0.25

0.5

0.75

1
O

n
e 

H
o

p
 S

u
cc

es
s 

P
ro

b
ab

il
it

y
(p

)
 = 5

 = 0

 = -5

(a) One Hop Success Probability (p) vs Sigma (σ)

5 10 15 20

 (dB)

1

2

3

4

5

6

7

8

9

10

D
el

ay
(t

im
es

te
p
s)

 = 5

 = 0

 = -5

(b) Delay vs Sigma (σ) (C = 10)

5 10 15 20

 (dB)

1

2

3

4

5

6

7

8

9

10

D
el

ay
(t

im
es

te
p
s)

 = 5

 = 0

 = -5

(c) Delay vs Sigma (σ) (C = 20)

Fig. 5: Impact of Variance in Shadowing on Delay

an environment where σ takes large values. As β
′

is dependent
on distance, it is clear that its value will vary between different
node pairs. However, irrespective of the value of β

′
for high σ

values, the probability of successful transmission between any
two network nodes including one-hop transmission probability
will tend to 0.5.

Figure 6 shows the variation in delay as the Zipfian skew-
ness parameter changes. For the uncorrelated and correlated
cases, we observe that the delay decreases as a increases,
irrespective of the cache capacity. Note that incrementing a in-
creases the skewness of the Zipfian distribution. When a = 0,
the Zipfian distribution converges to a uniform distribution,
while high values of a indicates that some pieces of content
are considerably more popular in comparison to majority of
content. The content placement strategy considered in our
evaluation caches popular content with a higher probability.
Therefore, for higher values of a, the probability of a request
getting satisfied at an in-network cache increases, thereby
resulting in lower delay. Once again, we observe that the delay
increases as ρ increases.

Figure 7 shows the variation in delay as the number of
network nodes increases considering Rayleigh fading and
shadowing channels. We observe that as the number of nodes
increases, the delay increases. This is expected because the
average number of transmissions needed to reach the custodian
or an en route cache having a copy of the content increases
with the number of nodes. We also conduct experiments by
increasing size of the content universe. For a fixed ratio of
cache size to content universe size, we observe similar delay
values, irrespective of content universe.

B. Trace based Evaluation

For conducting the trace-based evaluation, we use signal
strength measurement traces collected over a wireless sensor
network testbed by researchers at University of Duisburg-
Essen, Germany and Norwegian University of Science and
Technology, Norway [10]. The trace data includes packet de-
livery performance metrics collected under various parameter
configurations for a period of 6 months between November
2012 and November 2013.

1) Trace Experiment Setup: We identify that data needed
for experimentally validating greedy opportunistic forwarding
must adhere to certain criteria. In particular, for each node,

one-to-many transmissions must be recorded at each time
interval and the nodes themselves must be ordered according to
distance. We considered several publicly available traces, but
we only found one trace [10] that could be directly mapped to
the analyzed network model. For the purpose of these trace-
based experiments, we consider a network of 4 nodes as shown
in Figure 9 and map signal strength measurements (RSSI)
collected at distances 10m, 20m and 30m to 7 channels in
all. As depicted in Figure 9, there are 4, 2 and 1 channels
at a distance of 10m, 20m and 30m respectively. In our
experiments r1 is the source while r4 is the custodian.

r
2

r
1

r
3

r
4

10 m

20 m

30 m

Fig. 9: Mapped Network model for Trace

For each distance the trace contains received signal strength
information for successful transmissions for multiple transmis-
sion power levels between 3 and 31. These transmission power
levels correspond to a power range between -25 dBm to 0
dBm respectively. The trace contains 300 successive requests
for over 8000 iterations for each distance. In our experiments,
a recorded RSSI value is considered as a successful trans-
mission (mapped as 1) and the absence of a recorded value
is considered as an unsuccessful transmission (mapped as 0).
The mapping thus represents the channel quality in a binary
fashion, as either good (1) or bad (0).

We note that the environment and the testbed from which
these traces were collected may not necessarily correspond
to a Rayleigh fading or shadowing environment. Therefore,
in these trace-based experiments, to compare the performance
of the proposed Markovian model for analyzing opportunistic
routing via simulation and numerical evaluation we adopt
the following approach. The simulations are carried out by
considering the mapped trace data as results for transmission
success and failure between different node pairs. For the
numerical evaluation, the transmission probabilities values are
computed using the empirical approach outlined in Section
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Fig. 8: Delay vs. TxPower Level

IV-C. For simulation and numerical evaluation, 100000 re-
quests are generated according to a Zipfian distribution over
10 runs and the delay is calculated as the average number of
hops needed for a hit considering all the requests. The error
is calculated as the standard deviation for delay from the 10
runs of the experiment.

2) Trace Experiment Results: We note that real-world
traces exhibit correlation between successive packet transmis-
sions. Therefore, to emulate an uncorrelated channel using
these traces, we first generate a random permutation of the
trace. For the correlated channel experiments, we use the
original trace without any alteration. Our model relies on
the assumption that every time the source transmits a new
packet, it obtains an i.i.d. channel. Therefore, for the correlated
channel experiments, for a new packet transmission from the
source, we select a channel quality uniformly at random from
the trace and then consider channel correlation by selecting
the subsequent channel fades sequentially.

Figures 8(a) and 8(b) show the delay for the uncorrelated
and correlated channels using these traces for different power
levels. The increment in power level generally corresponds
to an increase in the probability of a direct successful trans-
mission between any two pair of nodes and thus the delay
decreases. We observe that a sudden increase in delay occurs
for power levels greater than 27 for both uncorrelated and
correlated channels. Fu et al. [11] observe a higher number
of failures in the trace data for larger distances (i.e., including
the direct link between the source and the custodian). They
attribute this behavior to increased mobility in the surrounding.
Additionally, the trace data [10] contains a higher number of
failures, particularly for larger power levels of 27 and 31, thus
resulting in increased delay.

We once again observe from Figures 8(a) & 8(b) that the
simulation and numerical results match closely that demon-
strates the widespread applicability of our model. We note that
though the numerical values in both Figures 8(a) and 8(b))
are close, we observe that similar to the results obtained in
Figures 3 and 4, the delay for correlated channels is higher
than uncorrelated channels. We also observe from the trace that
except for power levels 3 and 7, the calculated transmission
probabilities are high on average and lie within 0.8 and 1.0.
Therefore, significant number of transmissions result in a
success, and so the delay values for the uncorrelated and

correlated channels are close to each another for the other
power levels.

3) Discussion on the Markovian channel and i.i.d. as-
sumption: In this subsection, we investigate the impact of
the following assumptions—i) the channel correlation can be
completely captured via a Markovian model, and ii) whenever
the source transmits a new packet, it gets an i.i.d. channel.
The i.i.d. assumption is closely tied to the correlated channel
being Markovian because as we consider only a single packet
in transit, a successful transmission erases the memory of the
channel. From the trace, we observe that successes and failures
tend to occur in bursts, thus violating the Markovian channel
assumption.

We observe from Figure 8(b) that there is a difference in
delay between the numerical and simulation results for power
level 3. We hypothesize that this difference is primarily due
to the violation of the Markovian channel assumption. We
note that power level 3 has the largest number of successive
failures, and thus has the highest possibility of violating the
Markovian assumption. Figure 8(c) compares the simulation
and numerical results with the i.i.d. assumption relaxed in
the simulation. In these simulations instead of picking the
first transmission of a new packet randomly, the values were
picked in order. As expected, no difference is observed in the
numerical results between figures 8(b) and 8(c).

In contrast, the simulated delays for 8(c) show a decrease in
delay for all power levels and cache capacities. The decrease
in simulated delay can be attributed to the nature of the
spread among the failed and successful transmissions. Failed
transmissions tend to occur together followed by large number
of uninterrupted successful transmissions. Therefore, though
some packets incur large delays due to these transmission
failures, majority of the packets incur lower delays, resulting in
reduced delay overall. We observe that even though the numer-
ical and simulation results do not match closely in this setting,
our Markovian model for analyzing opportunistic forwarding
is successful in capturing the trend in the delay variation.
We plan to analyze opportunistic routing for channels with
significant memory as part of our future research.

VII. CONCLUSION

In this paper, we analyzed the delay of opportunistic request
routing in cache-enabled wireless networks. To this end, we
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designed Markovian models and derived expressions for the
transition probabilities considering uncorrelated and tempo-
rally correlated wireless channels. We then utilized the steady
state probabilities of the Markov chain to determine expres-
sions for the request routing delay. Via numerical evaluation
and simulation, we demonstrated the validity and effectiveness
of our Markovian models in modeling the request routing
delay. In future, we plan to extend this work for more re-
alistic scenarios by considering pipelined request streams and
interference from multiple competing flows. Additionally, as
network size increases, the Markovian model developed in this
paper is likely to encounter a state space explosion. Therefore,
we plan to develop approximate algorithms to address this
issue as part of our future work.
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