
RAMP: Real-Time Anomaly Detection in Scientific
Workflows

J. Dinal Herath⇤, Changxin Bai†, Guanhua Yan⇤, Ping Yang⇤, and Shiyong Lu†
⇤ State University of New York at Binghamton, Binghamton, NY, USA

† Wayne State University, Detroit, MI, USA

Abstract—Research integrity is crucial to ensuring the trust-

worthiness of scientific discoveries. This work is aimed at detect-

ing misbehaviors targeting scientific workflows, which are com-

puting paradigms widely used to facilitate scientific collaborations

across multiple geographically distributed research sites. We de-

velop a new system called RAMP (Real-Time Aggregated Matrix

Profile) for real-time anomaly detection in scientific workflow

systems. RAMP builds upon an existing time series data analysis

technique called Matrix Profile to detect anomalous distances

among subsequences of event streams collected from scientific

workflows in an online manner. Using an adaptive uncertainty

function, the anomaly detection model is dynamically adjusted

to prevent high false alarm rates. RAMP can incorporate user

feedback on reported anomalies and modify model parameters to

improve anomaly detection accuracy. Our experimental results

from applying RAMP to the logs generated by DATAVIEW, a

scientific workflow platform, show that RAMP is able to identify a

varied range of anomalies with high accuracy for both interleaved

and non-interleaved workflow executions in real time.

I. INTRODUCTION

Research integrity is crucial to ensuring the trustworthiness
of scientific discoveries. Scientific misconducts not only cause
reputation damages to researchers and institutions involved
in the scientific community, but also can have severe real-
life implications if dubious research results are transitioned
into practical use, such as medicine production and dietary
guidelines. Although there have been various regulations to
prevent or deter misconducts in scientific research, such mis-
behaviors are still not uncommon, according to a report in
2009 revealing that 2% of scientists surveyed had falsified,
fabricated, or modified their research data [12].

It is thus important to enhance existing cyberinfrastructures
used for scientific research activities with capabilities to detect
misbehaviors at their early stages before they contaminate the
eventual scientific discovery results. This work aims at de-
tecting misbehaviors targeting scientific workflows, which are
computing paradigms widely used to facilitate scientific col-
laborations across multiple geographically distributed research
sites. Popular scientific workflows include Montage used by
astronomists for image mosaics of the sky [9], CyberShake for
generating seismic hazard maps [17], and the myExpriment
social network site for bioinformatics researchers [14].

This work aims to develop new techniques that can detect
anomalies in scientific workflows in real time. The term “real
time” is similar to that in [3], [7], which means that the
anomaly detection model must observe a data record in a
sequential manner and any processing, learning, or anomaly
identification must be done before the arrival of the next

data record. Real-time anomaly detection has the advantage
of catching perpetrators’ misbehaviors at their early stages so
that the altered or falsified data or code can be prevented from
propagating into downstream scientific processes. Although
practically appealing, real-time anomaly detection requires
us to tackle the following technical challenges. Firstly, the
anomaly detection algorithm must be efficiently implemented
in order to keep up with the velocity of the event streams
observable in scientific workflows. Secondly, the anomaly
detection algorithm must be adaptive to situations where there
exists only limited supervised information initially. Lastly,
the anomaly detection algorithm should be able to adjust its
parameters dynamically based on human users’ feedback on
its reported anomalies.

Against this backdrop, we develop a new system called
RAMP (Real-Time Aggregated Matrix Profile) for real-time
anomaly detection in scientific workflow systems. RAMP
builds upon an existing time series data analysis technique
called Matrix Profile to detect anomalous distances among
subsequences of event streams collected from scientific work-
flows in an online manner. Using an adaptive uncertainty
function, the anomaly detection model is dynamically adjusted
to avoid repetitive alarms. RAMP can also incorporate user
feedback on reported anomalies and retrain model parameters
to improve anomaly detection accuracy. We have implemented
RAMP to parse logs generated by DATAVIEW, a scientific
workflow platform built upon Amazon EC2 [16], and detect
anomalous activities in real time.

In a nutshell, our main contributions are as follows:
• We tailor the vanilla Matrix Profile method to real-

time anomaly detection with two main modifications:
using relative distances among subsequences to avoid
inherent biases in Euclidean distance computation and
constraining calculation of distance profiles with a small-
sized training base to facilitate online model training.

• We introduce a new adaptive training mechanism to
reduce false alarm rates commonly plaguing anomaly
detection systems in practice. Our method uses a novel
uncertainty function that models evolving beliefs in
flagged anomalies over time to adjust model parameters.
This technique prevents RAMP from triggering repetitive
alarms due to the same type of anomalies.

• We empower RAMP with an optional human-in-the-loop
training scheme. To improve anomaly detection accuracy,
our method carefully modifies RAMP’s model parameters
based on human users’ feedback.

• We compare the performance of RAMP against those of978-1-7281-0858-2/19/$31.00 c� 2019 IEEE

two state-of-the-art real-time anomaly detection models
and our results show that RAMP has superior perfor-
mances in various anomaly situations while achieving
real-time responsiveness.

The rest of the paper is organized as follows. Section II
provides the background information. Section III discusses
the threat model and the types of anomalies RAMP detects.
Section IV and Section V present an overview of RAMP
and its algorithm details, respectively. Experimental results are
given in Section VI. We discuss related work in Section VII
and draw concluding remarks in Section VIII.

II. BACKGROUND

This section provides an overview of scientific workflows
and the Matrix Profile, the base model used to build RAMP.
A. Scientific Workflows and DATAVIEW

Scientific workflow is a cyberinfrastructure paradigm for
automating and accelerating data processing and sharing in the
scientific community. Figure 1 shows a diagnosis recommen-
dation workflow [4] consisting of five workflow tasks T1�T5,
each of which represents a computational or analytical step.

T1: Feature
Extraction

T2: Data
Partition

T3: Labeling
Unlabeled

Training Data

T4: Label Prediction
For Testing Data

T5: Diagnosis
Recommendation

Raw patient data Recommended
Diagnosis labels

Fig. 1: A Diagnosis Recommendation Workflow

DATAVIEW is a scientific workflow management system
running on Amazon EC2 [16]. Its logs record the real-
time status (events) of scientific workflows executed on EC2,
including the task execution status (e.g., task-start and task-
completion), the communication between the local machine
and the EC2 VMs (e.g., task-send and task-receive), and the
machine provisioning status (e.g., machine-idle and machine-
ready). Each log entry is associated with a timestamp, which
specifies the date and time of an event. The log also contains
the IP address of VMs on which workflow tasks are executed.

B. Matrix Profile
Matrix Profile [27] is a machine learning model that enables

the identification of similar (called motifs) and dissimilar
(called discords) patterns in a given time series. When new
data is appended to the original time series input, Matrix
Profile does not need to re-compute motifs and discords from
the beginning using all the data points; instead it is able to
change the existing results with little computational overhead.
This incrementally updatable nature enables Matrix Profile
to identify previously un-identified motifs that appear due
to a new data stream with relative ease. Matrix Profile’s
incremental updatability, fast execution, and low need for
parametric tuning (i.e., only one parameter to tune) ([5], [26],
[27], [29]) makes it an attractive model for real time machine
learning applications.

Define a univariate time series T which is a sequence of real
numbers T = t1, t2, . . . , tn. The Matrix Profile gives insight
about the global similarity or dissimilarity in a time series,

but this is computed with respect to local subsequences. A
subsequence Ti,m of T is a continuous subset of the values
from T with a given length m starting at position i (i.e.
Ti,m = ti, ti+1, . . . , ti+m�1 where 1  i  n � m + 1).
For any given subsequence in a time series, it is possible
to compute the Euclidean distance from itself to all other
subsequences. An ordered vector of the Euclidean distances
between a given subsequence Ti,m and an set of all sub-
sequences [T1,m, T2,m, ..., Tn�m+1,m] is called a distance
profile D. By extension, a multivariate time series T of d

dimensions is a set of co-evolving univariate time series where
T = [T (1)

, T
(2)

, ..., T
(d)] and a multivariate subsequence is

given by Ti,m = [T (1)
i,m

, T
(2)
i,m

, ..., T
(d)
i,m

].
Let T be a complete univariate time series and m be the

length of the subsequence. Matrix Profile works as follows.
First, it computes the distance profile Di for every subse-
quence Ti,m. The Matrix profile value at step i is obtained as
the minimum recorded value in Di, excluding the Euclidean
distance from Ti,m to itself which is trivially 0. Repeating
this process for the complete time series results in an ordered
vector of minimum Euclidean distance values corresponding
to each subsequence, which is called a Matrix Profile. A small
value in the Matrix Profile indicates that the subsequence
pattern is observed elsewhere in the time series (i.e. a motiff).
An abnormally large Matrix Profile value indicates that the
corresponding subsequence is not observed elsewhere in the
time series and hence may be a discord.

III. THREAT MODEL AND ATTACKS

We assume that workflow logs are protected and are not
tampered. We also assume that an attacker may exploit the
vulnerabilities in the workflow to modify the workflow tasks
and/or the communication between two tasks to alter scientific
results. In addition, an attacker can attack workflow systems
using Denial Of Service (DOS) attacks. We consider two
types of anomaly situations: (1) Level-1 anomalies: anomalies
resulting from direct attacks or malfunctions of DATAVIEW;
(2) Level-2 anomalies: attacks that attempt to hide the true
intent of an attack and confound the anomaly detection model.
A. Level-1 Anomalies

L1A1-Unexpected scheduler change: DATAVIEW provides
several task scheduling options, which deploy the workflow
tasks on different numbers of VMs. We consider the situation
where tasks are scheduled and executed on the VMs in a
pattern that is not predefined. This can be caused by an attacker
who intends to increase the load on DATAVIEW or as a part
of an adversarial attack (L2A1) described below.

L1A2-DOS attack: In DATAVIEW, after EC2 VMs are
provisioned, there are continuous communications between the
local machine used by a user and the VMs on which the
workflow tasks are executing, including task specifications,
task execution status, and VM status. We consider the DOS
attacks or spikes in network traffic which may slow down the
execution of scientific workflows.

L1A3-Task manipulation: This attack is performed by mali-
cious users who have access to the source code of the workflow
tasks. The malicious users modify the task code or inject pre-
computed values into the task execution to manipulate the

workflow result. RAMP detects L1A3 attacks that result in
an increase/decrease on the task execution time.

L1A4-Workflow structure manipulation: When the task code
is unavailable, a malicious user can inject a task or change the
workflow structure to manipulate the workflow result.

B. Level-2 Anomalies
L2A1-Workflow structure manipulation with Scheduler

change: The attacker performs a scheduler change attack
(L1A1) and a workflow structural change attack (L1A4) si-
multaneously. In this attack, the attacker aims to use the VM
provisioning change to mask the code change in the task,
which modifies the final results of the scientific workflow.

L2A2-Task manipulation with DOS attack: This combined
attack performs a DOS attack (L1A2) and a task manipulation
attack (L1A3) simultaneously. Both attacks affect the execu-
tion time of workflows. A combined attack of this nature aims
to mask task manipulation occurring during a DOS attack.

IV. OVERVIEW OF RAMP
This section provides an overview of RAMP, which detects

anomalies in scientific workflows based on DATAVIEW logs.

RAMP
Anomaly
Detection

Human-
In-The-Loop

Training

If Anomaly
Alarm Raised

Anomaly
Alarm

User Feedback (optional)

Data
Stream

Update Model
State (optional)

Request/Obtain
Model State

Adaptive
Training

External User

DATAVIEW

Uncertainty
Function

Fig. 2: The Architecture of RAMP

log1 2019/06/13-12:03:01.340 machine-ready 204.236.200.9
log2 2019/06/13-12:03:01.763 machine-ready 54.196.14.157
log3 2019/06/13-12:03:02.184 machine-ready 54.147.255.97
log4 2019/06/13-12:03:02.601 machine-ready 34.204.71.118

TABLE I: Log entries for VM Provisioning in DATAVIEW

Figure 2 gives the architecture of RAMP. The DATAVIEW
log entries are parsed into a time series with three dimen-
sions (features). The first is the time difference between two
successive log entries computed in millisecond precision. The
second reflects the change in process status between two
consecutive logs. In Table I, the term machine-ready reflects
the machine provisioning occurring at each log step. There-
fore, the time series would contain [machine-ready�!machine-
ready] occurring for three times. The final dimension reflects
the change in IP address between two successive log entries
as [[204.236.200.9 �! 54.196.14.157] , [54.196.14.157 �!
54.147.255.97] , [54.147.255.97 �! 34.204.71.118]]. Once the
log entries are parsed, subsequences are formed and given to
RAMP. With a subsequence length of 3, the first subsequence
is [log1, log2, log3] and the second one [log2, log3, log4].

RAMP has three main components: an Anomaly Detec-
tion module, an Adaptive Training module, and an optional
Human-in-the-Loop training module. At each time step, the
Anomaly Detection module takes as input a subsequence of
data stream and computes a weighted aggregated anomaly
score, which signifies the possibility that the input subsequence

is an anomaly or not. The anomaly score aggregates the
prediction results of individual Matrix Profile models operated
on different dimensions of the input subsequence. As it is
unclear what types of anomalies could happen in the future,
RAMP uses a semi-supervised model where RAMP learns
the correct behaviour of workflow execution in the first few
workflow runs and then identifies instances that heavily deviate
from it as potential anomalies. This approach is also used
in other real-time machine learning models (e.g., anomaly
detection models in the Numenta Anomaly Benchmark [1]),
where an initial grace period is needed to learn the correct
behaviour of real time data. This grace period, however, may
not be sufficient for models to continuously update its internal
state and detect anomalies with high accuracy.

The Adaptive Training module is designed to facilitate fast
state convergence in real time. The Adaptive Training module
is invoked to update model weights whenever the anomaly
detection module flags an anomaly. These weights are updated
according to the anomaly score reported by the Anomaly
Detection module and an uncertainty function, which proba-
bilistically captures the model state. The uncertainty function
assumes that anomalies are less likely to occur in the first few
executions of a scientific workflow and the likelihood becomes
higher with more runs. The intuition behind this assumption
is that an attacker has little information to attack a workflow
in its first few execution runs but the situation changes once
he gains more knowledge about the workflow. The Adaptive
Training module ensures that RAMP will continuously learn
the temporal behaviour of a time series and subsequently
improves the overall performance.

Finally, RAMP uses an optional human-in-the-loop training
module to improve anomaly detection accuracy based on hu-
man feedback. Specifically, given the true positives identified
by human users, this module revises the corresponding model
weights so that similar anomalies encountered in the future
are more likely to be caught by RAMP.

V. ALGORITHM DETAILS

This section presents the details of RAMP. We assume that,
in every M user defined time steps, RAMP invokes the human-
in-the-loop training to process human feedback.
A. Anomaly Detection Module

RAMP uses a modified version of Matrix Profile for
anomaly detection. Our description here uses the same no-
tations as those in Section II-B. We first explain our key
modifications to Matrix Profile and then present the details
of our anomaly detection algorithm.

1) Modifications to Matrix Profile: One modification we
made to the Matrix Profile is limiting the number of subse-
quences compared. For a given subsequence, Matrix Profile
computes the Euclidean distance with respect to all other
subsequences and identifies the minimum distance. Therefore,
a repeated anomaly instance would cause false negatives
due to the previous anomaly instance being part of the all
subsequence set. RAMP, in contrast, uses a semi-supervised
model where only the first M�m+1 subsequences (i.e., subse-
quences up to the M -th item in the time series) are considered.
We define the training base as T

’ = [T1,m,T2,m, ...,TM-m+1,m]

with d dimensions (i.e., T1,m = [T (1)
1,m, T

(2)
1,m, ..., T

(d)
1,m]). We

illustrate in Figure 3 the demarcation of subsequences and the
initial training base for a univariate time series (d = 1) where
m = 3 and M = 50.

t1 t2 t3T

T

M
m

47t 48t 49t 50t ttt i i+1 i+2t 54 t

T48,3,
T1,3 T2,3 T48,3

, , , the sub-sequence set up to the
the 50th time series value

Ti,3T1,3 T2,3

ttt i i+1 i+2Ti,3 the sub-sequence at step i

Fig. 3: Demarcation of subsequences

Our second modification is that, instead of computing the
absolute Euclidean distance, we compute relative distances
among subsequences. The purpose behind this modification is
to overcome the inherent bias of Euclidean distance towards
numerically larger data points. Given two univariate subse-
quences T1,m = [t1, t2, ..., tm] (an input subsequence) and
T

0

1,m = [t
0

1, t
0

2, ..., t
0

m
] (a subsequence used for comparison),

the relative distance is computed by
Pm

l=1 |tl�t
0
l |Pm

l=1 |t0l |
.

Procedure AnomalyDetection

1 �i = 0, Ci = Ø, key = 0, Dmin = Ø
2 for j = 1 to d do

3 min rd = +1, min k = �1
4 for k = 1 to M �m+ 1 do

5 relativeDistance =
Pm

l=1 |T (j)
k,m[l]�T

(j)
i,m[l]|

Pm
l=1 |T (j)

k,m[l]|
6 if relativeDistance > min rd then

7 min rd = relativeDistance

8 min k = k

end

9 R[j, i%M + 1] = min k

10 key += (M �m+ 1)j�1 · (min k � 1)
11 �i += min rd

12 Dmin[j] = min rd

end

13 for j = 1 to d do

14 Ci[j] = Dmin[j]/�i

end

15 if key exists in W then

16 �i = W [key]⇥ �i

17 H[i%M + 1] = �i/✓

18 if (�i > ✓) AnomalyDetected = True

19 else AnomalyDetected = False

20 return [AnomalyDetected, Ci, R,H]
Algorithm 1: Anomaly Detection procedure

2) Algorithm description: Our anomaly detection algorithm
is given in Algorithm 1. For every time step i, the Anomaly-
Detection procedure computes an aggregated anomaly score,
�i, which indicates the likelihood of an anomaly. In order
to compute �i, for each dimension of the input subsequence
Ti,m, we first calculate the minimum relative distance between
Ti,m and any subsequence in the training base T

’. The ag-
gregated anomaly score �i is updated to be the sum of the
minimum relative distances over all d dimensions (Line 2-
12). The individual contribution of each dimension towards
the aggregated anomaly score, which is calculated as the
ratio of the minimum relative distance between Ti,m and any

subsequence in the training base T
’ to �i, is saved into a

contribution list Ci = [C(1)
i

, C
(2)
i

, ..., C
(d)
i

] (Line 13-14). For
example, C(1)

i
= 1 indicates that the anomaly score is decided

only by the first dimension in the time series.
It is noted that the aggregated anomaly score �i is affected

by a unique combination of d subsequences in the training
base T

’, each having a minimum relative distance from the
current input subsequence Ti,m at one of the d dimensions. As
there are M �m+1 subsequences in the training base, there
are (M �m+ 1)d possible combinations over d dimensions.
Our algorithm keeps a weight for each of these combinations,
reflecting the model’s confidence level in the aggregated
anomaly score if it is derived from this combination. In
Algorithm 1, the index of the unique combination responsible
for the computation of �i is stored in variable key (Line 10).
The eventual anomaly score �i is derived by multiplying it by
the weight indexed by key (Line 15-16). It is easy to see a
challenge due to the curse of dimentionality: if d is large, it
is expensive to store all (M �m + 1)d possible weights. To
circumvent this problem, we use a hash table W to store only
updated weights, while assuming that those weights not in W

take a default value of 1. Our experimental results in Section
VI-C show that only a small fraction of possible weights are
updated by RAMP in practice.

Recall that the human-in-the-loop training module is called
by RAMP every M time steps to process any feedback from
users. As users may overrule the anomaly detection results by
RAMP in the past M time steps, RAMP should remember the
indices of weights used to compute the anomaly scores during
this period. To this end, we use a matrix R of dimensions
d⇥M to record the indices of weights that have been updated
in the past M time steps. Entry R[j, k] stores the index of the
subsequence within the training base T

’ that has the minimum
relative distance for dimension j 2 [1, d] at the k-th time step
among the past M ones (i.e., k 2 [1,M]). This is done by Line
9 in Algorithm 1. Additionally, array H of length M stores
the ratios of the anomaly scores to the user-defined threshold
(i.e., �i

✓
) for the past M time steps (Line 17). The aggregated

anomaly score �i is compared against a user-defined threshold
✓ (Line 18): if �i > ✓, an anomaly is flagged, which triggers
the execution of the adaptive learning module; otherwise, the
anomaly detection module terminates.

B. Adaptive Training
The original Matrix Profile model does not adjust its model

parameters based on the anomalies detected, which can cause
repetitive false alarms for a long period of time. To reduce false
positive rate, our adaptive training module, which is called
when an alarm is raised by the anomaly detection module,
adjusts not only the model parameters affected at the current
time step but also those that may be affected in the near future.

Algorithm 2 gives the Adaptive Training procedure. Recall
that there are (M � m + 1)d possible weights affecting the
anomaly scores. To achieve real time training, we use a
training heuristic, which is experimentally validated in Section
VI-D, to select only (2m + 1) weight values for updating
irrespective of the dimensionality d of the input. The middle
m + 1 weight values, which correspond to k = m + 1 in

Procedure AdaptiveTraining

1 keys = zeros[1, 2m+ 1]
2 for k = 1 to 2m+ 1 do

3 for j = 1 to d do

4 keys[k] +=
(M�m+1)j�1 · (R[j, i%M+1]�m+k�1)

end

5 if keys[k] does not exist in W then

6 W [keys[k]] = 1
7 if k == m+ 1 then

8 �
unweighted

i
= H[i%M+1]·✓

W [keys[k]]

9 W [keys[k]] = W [keys[k]]
2H[i%M+1] · ↵[k] · (1� pi)

10 H[i%M + 1] =
W [keys[k]]·�unweighted

i
✓

else

11 W [keys[k]] = W [keys[k]]
2H[i%M+1] · ↵[k] · (1� pi)

end

end

12 return [W,H]
Algorithm 2: Adaptive Training procedure

Algorithm 2, are called the anomaly-inducing weights, as they
are the same ones used to update the anomaly score by the
anomaly detection module (Line 16 in Algorithm 1). The keys
indexing the (2m+1) weights in hash table W to be updated
are calculated in Lines 3-4.

These selected weights are modified in Lines 7�11 accord-
ing to the following equation:

W [key] =
W [key]

2H[i%M + 1]
· ↵[k] · (1� pi), (1)

where W [key] is the weight to be updated, H[i%M+1] is the
ratio of the anomaly score computed (�i%M+1) to threshold ✓,
↵[k] is a training bias value that captures temporal correlation
for the k-th chosen weight, and pi reflects the uncertainty level
at time step i. Due to weight updating, H[i%M + 1], which
stores �i

✓
, should also be updated. This is done by Line 10 in

Algorithm 2 where the unweighted anomaly score �
unweighted

i

(i.e., the unweighted value before Line 16 of Algorithm 1) is
first derived and then used to update H[i%M +1] along with
the new weight.

The rationale behind Eq. (1) is that future anomaly score
calculations using the same weight indexed by key should
result in smaller values for �i to avoid repetitive alarms. As the
adaptive training module is called when an anomaly is detected
(i.e., �i > ✓), H[i%M+1], which is calculated as �i/✓ should
always be greater than 1. The first portion of the formula

W [key]
2H[i%M+1] aims to reduce the weight value so that a future
use of the same weight on the same unweighted anomaly
score will result in exactly half of the threshold ✓. This is
because, assuming that the unweighted anomaly score is �0

and the old weight is w0, we have: H[i%M = 1] = w0�0/✓;
as W [key]

2H[i%M+1] = ✓/(2�0), using it on the same unweighted
anomaly score �0 leads to a weighted anomaly score of ✓/2.

Uncertainty function pi: Each weight in Eq. (1) is multi-
plied by a factor of 1� pi, where pi 2 [0, 1] is an uncertainty
function capturing the model state:

pi =

(
1� exp((Ki)b � (i)b), if i > M

0, otherwise
(2)

Here, i is the current time step, Ki is a state variable updated
upon user feedback (see Section V-C), and b 2 [0, 1] is a
user-defined bias parameter, which defines the rate at which
pi converges to 1. When pi is close to 0, RAMP believes that
the reported anomalies are false positives with a high certainty.
When pi is close to 1, RAMP believes that the reported
anomalies are likely to be true positives. At the beginning
of RAMP, Ki is initialized to M whereas b is given by the
user. The greater the b, the faster the convergence. RAMP uses
the first M input values to build T

’. Therefore, pi is 0 when
i  M and starts increasing when i = M . Without any user
feedback pi will gradually increase to 1 with no sudden drops.
This reflects our assumption that anomalies are more likely to
occur with longer running time. In Section V-C, we illustrate
how the uncertainty function changes with the user feedback.

Training bias ↵: As the training procedure updates 2m+1
temporally correlated weights, each one is multiplied by its
respective training bias. The training bias ↵ is a vector of
size 2m + 1 that captures the temporal correlation among
2m+1 weights. We assume that the temporal correlation varies
according to a normalized Gaussian distribution N(0,m) (i.e.,
the largest value in distribution at mean 0 is 1) around an
identified false positive weight. Note that the sampling process
is carried out once for an entire execution of RAMP since
2m+1 weights are updated at each training cycle. Additionally
↵ is constructed by sampling values from the distribution
starting from �m to +m with unit step size such that ↵[1]
and ↵[2m+1] will have the smallest values and ↵[m+1] will
have the highest value of 1.

C. Human-in-The-Loop Training
Algorithm 3 describes our Human-in-the-loop training mod-

ule. RAMP checks whether there is human feedback every
M time steps. The human feedback includes the lists of time
step indices with false positives UFP and true positives UTP

among the previous M time steps.

Procedure HumanInTheLoopTraining

1 Ki = Ki�M + [i�Ki�M] |UFP |
M

2 for iTP 2 Ui,TP do

3 key = 0
for j = 1 to d do

4 key += (M�m+1)j�1 ·(R[j, iTP%M+1]�1)
end

5 W [key] = 2W [key]
H[iTP%M+1]

end

6 return [Ki,W]
Algorithm 3: Human-In-The-Loop Training procedure

Recall that in Eq. (2), state variable Ki is used to calculate
the uncertainty function pi. The human-in-the-loop training
procedure first updates Ki according to the formula Ki =
Ki�M +[i�Ki�M] |UFP |

M
(Line 1). The intuition here is that,

if a large fraction of the previous M time steps has raised false
alarms, we decrease the confidence in the model prediction
results by forcing a sudden drop in uncertainty function pi.

In addition to updating the state variable Ki, the human-in-
the-loop training module also updates the weight values that
may have been erroneously trained in the past. As RAMP

reduces the value of each anomaly-inducing weight to avoid
high false alarm rates without human feedback (Line 9 in
Algorithm 2), RAMP rectifies these weights if their corre-
sponding anomalies are verified to be true positives by human
users. Given the user-provided set Ui,TP , which includes the
time step indices of true positives, the keys indexing their
corresponding anomaly-inducing weights in hash table W are
calculated in Lines 3-4; these weights are then updated in a
similar manner as in Eq. (1), except that pi = 0 because we
assume the user feedback to be the ground truth (Line 5).
Moreover, for an anomaly-inducing weight, its corresponding
training bias ↵ is always 1. Thus, the effect of weight updating
is that a future use of the new weight on the same unweighted
anomaly score as in time step iTP should result in a weighted
anomaly score of exactly 2✓.

VI. EXPERIMENTAL RESULTS

RAMP was implemented using Python. We have measured
the performance of RAMP using worklow logs collected by
the DATAVIEW system running on Amazon EC2 VMs.

In our experiments, we consider the interleaved execution
of three workflows – Ligo [6], Wordcount [8] and Diagnosis
Recommendation [4]. At any given point in time, only one
of the three workflows runs on EC2 VMs. All workflow
executions are recorded on a single log instance and no
indication is given to anomaly detection models with respect to
which log entry corresponds to which workflow. We conducted
experiments to test the robustness of RAMP and its ability
to handle noisy data. For each anomaly type, we executed
the workflows for six hours and collected the logs containing
about 5000 data points in the time series. The parameters used
for performance comparison are m = 10,M = 200, b = 0.8
for Level-1 anomalies, and are m = 5,M = 200, b = 0.8 for
Level-2 adversarial attacks.

A. Performance Comparison: Anomaly Detection
This section presents the performance results of RAMP

on detecting Level-1 and Level-2 attacks. We compare three
RAMP versions based on the extent of user feedback given,
namely RAMP (RAMP with both adaptive and human-in-the-
loop training), RAMP-no-feedback (RAMP with only adaptive
training), and RAMP-oracle (RAMP with feedback from an
all-knowing oracle). RAMP-no-feedback is unable to rectify
any erroneous training or update its internal state due to the
lack of user feedback. RAMP-oracle updates the weights for
both true positives and false negatives identified by the oracle
as done in Lines 3-5 of Algorithm 3. In addition, RAMP is
compared with two other real-time machine learning models
– Hierarchical Temporal Memory (HTM) [3] and KNN-
CAD [7] – which are available in the open source Numenta
Anomaly Benchmark (NAB) [1]. Among all the machine
learning models in NAB, these two were shown to have good
performances in detecting anomalies in scientific workflows
[20]. As the anomaly detection models in NAB are designed
for univariate time series, we consider one dimensional data
input where the dimension most affected by a given anomaly
type is fed into all the models for Level-1 anomaly situations.
As Level-2 adversarial anomalies affect multiple dimensions

simultaneously, HTM and KNN-CAD models were not used
in performance evaluation in these instances.

1) Level-1 Anomalies: Figures 4(a)–4(d) give the Receiver
Operator Characteristics (ROC) for Level-1 anomalies for the
interleaved execution of three workflows. The figures show
that all the RAMP versions have significantly lower false
positives and higher true positives than HTM and KNN-
CAD. On average considering the Area Under Curve (AUC)
results in Table II for anomalies L1A1-L1A4, RAMP shows
an 46.62% and 84.14% increase in AUC compared to HTM
and KNN-CAD, respectively. We attribute this increase to
the adaptive training module, which adjusts model weights
to avoid reporting repetitive anomalies.

Figure 4(a) shows that, RAMP-oracle has higher true posi-
tive rates than the other models on L1A1. In addition, RAMP-
no-feedback has slightly higher false positive rates than the
others. We note similar results with respect to other anomaly
situations (Figures 4(b)-4(d)). However, when comparing the
AUC results of three RAMP versions (Table II), the perfor-
mance of RAMP is close to that of RAMP-oracle and RAMP-
no-feedback by a difference of ±5%.

We note similar results in single workflow executions, where
all RAMP versions greatly outperforms HTM and KNN-CAD.
Due to lack of space, we present only the AUC results for
single workflow execution in Table II. As single workflow
execution does not contain noise, RAMP has increased per-
formance in all anomaly situations (Average Level-1 RAMP
AUC increases from 0.8883 to 0.9959). We observe that the
noise caused by interleaved workflow executions has a higher
impact on inter-workflow anomalies L1A1 and L1A2 than
intra-workflow anomalies L1A3 and L1A4. Inter-workflow
anomalies occurring to a given workflow instance can interfere
with other interleaving workflows. RAMP has slightly lower
AUC for inter-workflow anomalies, as shown in Figures 4(a)
and 4(b), where the maximum true positive rate for RAMP is
around 0.8. In contrast, the performance with intra-workflow
anomalies is not affected by interleaving workflows because
they are local to a single workflow instance.

2) Level-2 Adversarial Anomalies: Figures 4(e) and 4(f)
give the performance results of all RAMP versions for Level-
2 anomalies. As expected, even though their AUCs decrease
slightly, all three RAMP models perform well in adversarial
situations (Table II). RAMP-no-feedback has its false positive
rates increased more significantly than the other two RAMP
variants along with a slight increase in its true positive rates.
We further note that the performance of RAMP is close to that
of RAMP-oracle, suggesting that RAMP performs robustly
even in adversarial situations.
B. Execution Performance: RAMP Response Time

Figure 5 shows the response time of RAMP in Level-1
anomaly scenarios for the first 3, 000 seconds. The x-axis
shows the relative time at which DATAVIEW records a log
entry; the average rate is 3.4368 seconds per log entry. The
y-axis shows the sum of the RAMP response time and the
relative logging time by DataView. The figure shows that for
all anomaly scenarios the time closely follows the y = x

reference line. More specifically, the execution time for RAMP
inclusive of adaptive training is approximately 0.0118 seconds

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ru

e
 P

o
s
it

iv
e
 R

a
te

RAMP-no-feedback

RAMP-oracle

RAMP

HTM

KNN-CAD

(a) L1A1 - Scheduling Change

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ru

e
 P

o
s
it

iv
e
 R

a
te

RAMP-no-feedback

RAMP-oracle

RAMP

HTM

KNN-CAD

(b) L1A2 - DOS Attack

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ru

e
 P

o
s
it

iv
e
 R

a
te

RAMP-no-feedback

RAMP-oracle

RAMP

HTM

KNN-CAD

(c) L1A3 - Task Manipulation

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ru

e
 P

o
s
it

iv
e
 R

a
te

RAMP-no-feedback

RAMP-oracle

RAMP

HTM

KNN-CAD

(d) L1A4 - Workflow Manipulation

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ru

e
 P

o
s
it

iv
e
 R

a
te

RAMP-no-feedback

RAMP-oracle

RAMP

(e) L2A1 - Scheduler Change

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ru

e
 P

o
s
it

iv
e
 R

a
te

RAMP-no-feedback

RAMP-oracle

RAMP

(f) L2A2 - Task Manipulation with DOS Attack

Fig. 4: Receiver Operator Characteristics (ROC) for Interleaved Scientific Workflow Anomalies. Each data point is generated
between Threshold (✓) values from 0� 1 with a step size of 0.1 where the highest ✓ of 1 is at the furthest left.

Table II: Area Under the Curve (AUC) results for Reciever Operator Charachteristics (ROC)
for Interleaved (Int.) and Non-Interleaved (Non-Int.) workflows.

0 500 1000 1500 2000 2500 3000

Logged Time (s)

0

500

1000

1500

2000

2500

3000

R
A

M
P

 R
es

p
o
n
se

 T
im

e
+

 L
o
g
g
ed

 T
im

e
(s

)

L1A1 - Scheduler Change
L1A2 - DOS Attack
L1A3 - Task Manipulation
L1A4 - Workflow Manipulation
y=x Refrence Line

Fig. 5: RAMP Response Time

on average, which is about 0.0034 times the data stream speed.
The results demonstrate the real-time effectiveness of RAMP,
where the time taken to detect an anomaly is negligible.

C. Space Complexity: Sparsity of Modified Weights
As mentioned in Section V-A, the total number of possible

weights is (M � m + 1)d. To reduce the space complexity,
we store only weights modified by RAMP in a hash table. We
obtained the weights modified by RAMP for each workflow in
the interleaved scenario for L2A1 where M = 200,m = 5 and
d = 3. Our experimental results show that the total number
of weights is 7529536 for each workflow, but only 131, 496,
and 250 weights are updated for Diagnosis Recommendation,
Ligo, and Wordcount workflow, respectively.

D. Time Complexity: Adaptive Training Heuristics
As described in Section V-B, our optimized adaptive train-

ing module updates only 2m + 1 weight values at each step
instead of (2m+1)d weights in complete training. Figures 6(a)
and 6(b) show the ROC and the execution time for the first
1000 input subsequences received for the complete training
and the optimized training, respectively. Figure 6(a) shows
that the two training schemes have similar numbers of true

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

o
si

ti
v
e

R
at

e

RAMP - (2m+1)
d
 updated weights

RAMP - (2m+1) updated weights

(a) ROC

0 200 400 600 800 1000

Time step (i)

0

0.005

0.01

0.015

0.02

E
x
ec

u
ti

o
n

 T
im

e
(s

)

RAMP - (2m+1)
d
 updated weights

RAMP - (2m+1) updated weights

(b) Execution time
Fig. 6: Performance of our optimized adaptive training.

and false positives, and Figure 6(b) shows that our optimized
training method is about 2.5 times faster than the complete
training one. Note that there is a sudden increase in execution
time after about 300–400 time steps for both training methods
due to the interleaved execution of workflows.

VII. RELATED WORK

Real-time anomaly detection: Hierarchical Temporal
Memory (HTM) is a model designed to replicate the neocortex
of mammals and how the neurons learn and predict [3].
While HTM has been used in many real-time anomaly de-
tection applications (e.g., [1], [20]), it interprets only univari-

ate time series data. Bayesian Online Checkpoint Detection
(BOCD) [2] is capable of identifying anomalies in streaming
data. However, it assumes that the underlying distribution
of data is known. KNN-CAD [7] is a model that uses the
density and the distance based nearest neighbour algorithm
for anomaly detection. Relative Entropy [25] uses Turkey and
relative entropy statistics for anomaly detection. EXPoSE [23]
is an anomaly detection model that handles multidimenional
data. However, as shown in [1], EXPoSE performs poorly
when datasets are of moderate sizes and are univariate.

Anomaly detection in distributed systems: Anomaly de-
tection models have been extensively used in the domain
of distributed systems, ranging from preventing DOS attacks
[18] to detecting anomalous usage in VMs in the cloud [10].
Various Machine Learning models have been proposed in this
application domain, including the non-parametric clustering
model [28], the Support vector Machine model [19], and the
use of Baysian Classifiers and tree augmented networks to
identify anomalies in distributed systems [24]. The work in
[11] uses deep learning to detect anomalies in system logs.
However, none of the above models are real-time models.

Anomaly detection in scientific workflows: Samark et
al. [22] introduced a Naive Bayes model to predict the
likelihood of a job success or failure in scientific workflows.
The work in [21] proposes an unsupervised model based on
K-means clustering that detects hard and soft anomalies in
an online manner. The work in [15] is aimed at identifying
time periods where majority of anomalies occur. Gaikwad et
al. [13] proposed a framework to detect performance anomaly
w.r.t. the execution time in scientific workflows. Rodriguez et
al. [20] conducted a similar study with respect to performance
anomalies in scientific workflows. However, none of the above
works have considered anomalies resulting from malicious
attacks or identified anomalies in multivariate time series.

VIII. CONCLUSIONS

This work is aimed at enhancing existing scientific
workflow platforms with misbehavior detection capabilities.
We develop RAMP, a novel real time anomaly detection
model that takes multivariate streaming data input from
DATAVIEW logs and produces anomaly alarms in real time.
Our experimental results show that RAMP has superior
performance while achieving real-time responsiveness in a
variety of anomaly situations.
Acknowledgement: This work is supported in part by the
National Science Foundation under grant OAC-1738929.

REFERENCES

[1] Numenta, https://github.com/numenta/nab, 2019.
[2] R. P. Adams and D. J. MacKay. Bayesian online changepoint detection.

arXiv:0710.3742, 2007.
[3] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised real-time

anomaly detection for streaming data. Neurocomputing, 262:134–147,
2017.

[4] I. Ahmed, S. Lu, C. Bai, and F. A. Bhuyan. Diagnosis recommendation
using machine learning scientific workflows. In IEEE Congress on Big
Data, pages 82–90, 2018.

[5] S. D. Anton, L. Ahrens, D. Fraunholz, and H. D. Schotten. Time is
of the essence: Machine learning-based intrusion detection in industrial
time series data. In ICDM Workshops, pages 1–6, 2018.

[6] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. McNabb.
A case study on the use of workflow technologies for scientific analysis:
Gravitational wave data analysis. In Workflows for e-Science. 2007.

[7] E. Burnaev and V. Ishimtsev. Conformalized density-and distance-based
anomaly detection in time-series data. arXiv:1608.04585, 2016.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[9] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost
of doing science on the cloud: the montage example. In ACM/IEEE
conference on Supercomputing, page 50, 2008.

[10] F. Doelitzscher, M. Knahl, C. Reich, and N. Clarke. Anomaly detection
in iaas clouds. In International Conference on Cloud Computing
Technology and Science, volume 1, pages 387–394, 2013.

[11] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. In Proceedings
of ACM Conference on Computer and Communications Security, 2017.

[12] D. Fanelli. How many scientists fabricate and falsify research? a
systematic review and meta-analysis of survey data. PloS one, 4(5),
2009.

[13] P. Gaikwad, A. Mandal, P. Ruth, G. Juve, D. Król, and E. Deelman.
Anomaly detection for scientific workflow applications on networked
clouds. In International Conference on High Performance Computing
& Simulation, pages 645–652, 2016.

[14] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides,
D. Newman, M. Borkum, S. Bechhofer, M. Roos, P. Li, et al. myexper-
iment: a repository and social network for the sharing of bioinformatics
workflows. Nucleic acids research, 38(suppl 2):677–682, 2010.

[15] D. Gunter, E. Deelman, T. Samak, C. H. Brooks, M. Goode, G. Juve,
G. Mehta, P. Moraes, F. Silva, M. Swany, et al. Online workflow
management and performance analysis with stampede. In International
Conference on Network and Service Management, pages 1–10, 2011.

[16] A. Kashlev and S. Lu. A system architecture for running big data
workflows in the cloud. In 2014 IEEE International Conference on
Services Computing, pages 51–58. IEEE, 2014.

[17] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Cost-and deadline-
constrained provisioning for scientific workflow ensembles in iaas clouds
in: Proceedings of the international conference on high performance
computing, networking, storage and analysis, 22, 2012.

[18] A. Navaz, V. Sangeetha, and C. Prabhadevi. Entropy based anomaly
detection system to prevent ddos attacks in cloud. arXiv:1308.6745,
2013.

[19] H. S. Pannu, J. Liu, and S. Fu. A self-evolving anomaly detection
framework for developing highly dependable utility clouds. In IEEE
GLOBECOM, pages 1605–1610, 2012.

[20] M. A. Rodriguez, R. Kotagiri, and R. Buyya. Detecting performance
anomalies in scientific workflows using hierarchical temporal memory.
Future Generation Computer Systems, 88:624–635, 2018.

[21] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, G. Mehta,
F. Silva, and K. Vahi. Online fault and anomaly detection for large-scale
scientific workflows. In International Conference on High Performance
Computing and Communications, pages 373–381, 2011.

[22] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, F. Silva, and
K. Vahi. Failure analysis of distributed scientific workflows executing
in the cloud. In 8th international conference on network and service
management, pages 46–54, 2012.

[23] M. Schneider, W. Ertel, and F. Ramos. Expected similarity estimation for
large-scale batch and streaming anomaly detection. Machine Learning,
105(3):305–333, 2016.

[24] Y. Tan et al. Online performance anomaly prediction and prevention for
complex distributed systems. 2012.

[25] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan. Statistical techniques for online anomaly detection in data
centers. In Integrated Network Management, pages 385–392, 2011.

[26] C.-C. M. Yeh, H. Van Herle, and E. Keogh. Matrix profile iii: the
matrix profile allows visualization of salient subsequences in massive
time series. In ICDM, pages 579–588, 2016.

[27] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, and E. Keogh. Matrix profile i: all pairs similarity
joins for time series: a unifying view that includes motifs, discords and
shapelets. In ICDM, pages 1317–1322, 2016.

[28] L. Yu and Z. Lan. A scalable, non-parametric anomaly detection
framework for hadoop. In ACM Cloud and Autonomic Computing
Conference, page 22, 2013.

[29] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. Keogh. Matrix profile ii: Exploiting a novel
algorithm and gpus to break the one hundred million barrier for time
series motifs and joins. In ICDM, pages 739–748, 2016.

