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Abstract—Accurately modeling and predicting wireless chan-
nel quality variations is essential for a number of networking
applications such as scheduling and improved video streaming
over 4G LTE networks and bit rate adaptation for improved
performance in WiFi networks. In this paper, we propose an
encoder-decoder based sequence-to-sequence deep learning model
that is capable of predicting future wireless signal strength
variations based on past signal strength data. We consider
two different versions of the deep learning model; the first
and second versions use LSTM and GRU as their basic cell
structure, respectively. In contrast to prior work that is primarily
focused on designing models for particular network settings,
the deep learning model is highly adaptable and can predict
future channel conditions for different networks, sampling rates,
mobility patterns, and communication standards. We compare
the performance (i.e., the root mean squared error of future
predictions) of our model with respect to two baselines—i) auto-
regression(1), and ii) linear regression for multiple networks and
communication standards. In particular, we consider 4G LTE,
WiFi, an industrial network operating in the 5.8 GHz range,
Zigbee, and WiMAX networks operating under varying levels of
user mobility and observe that the deep learning model provides
significantly superior performance. Finally, we provide detailed
discussion on key design decisions including insights into hyper-
parameter tuning of the model.

Index Terms—wireless channel prediction, deep learning,
sequence-to-sequence models, LSTM, GRU

I. INTRODUCTION

Modeling and accurately predicting wireless channel quality
variations (e.g., received signal strength) has received signif-
icant attention in wireless communications and networking
research, starting from the early Gilbert and Elliot two-state
Markov channel model [6]. Most prior research has been
focused on designing Markovian models that elegantly capture
the impact of wireless channel characteristics such as multi-
path fading, shadowing and path loss on the received signal
strength [3], [11]. Though these models provide valuable
insight, majority of these models are tied to particular network
settings and are dependent on parameters such as sampling
rate, mobility, and location. Thus, they cannot be seamlessly
used for predicting signal strength across different wireless
networks.

Revisiting the channel prediction problem in today’s data-
driven Internet-of-things era is extremely important, particu-
larly due to the exponential growth in the number of diverse
wireless devices that communicate with each other using a
variety of technologies (e.g., WiFi, 4G LTE, Zigbee) in dif-
ferent wireless scenarios (e.g., home, commercial, industrial).

Additionally, the rapid increase in computational power over
the last decade and the availability of large amounts of data,
coupled with advances in the field of machine learning provide
us the opportunity to design models that provide superior
prediction performance of wireless channel quality variations
[10]. Multiple foreseeable applications motivate this research
such as better scheduling and improved video streaming over
4G networks, bit rate adaptation for improved performance in
WiFi networks, and energy efficient and bulk transfer of data
in sensor networks.

In this paper, we design deep learning models to address
the wireless channel quality prediction problem. Specifically,
we design an encoder-decoder based sequence-to-sequence
deep learning model, which is capable of predicting variations
in wireless channel quality. Our goal is to design a deep
learning model that can effectively capture channel quality
variations in different network settings, in a variety of mobile
scenarios, and works across communication standards and for
different sampling rates. Our model is comprised of two main
components—-i) an encoder and ii) a decoder, each of which
separately is a multi-layer recurrent neural network (RNN).
The encoder takes past signal strength measurements and
computes a state vector that captures channel information. The
decoder in turn uses this state vector to predict future channel
variations. We propose two variations of the model based on
the inner cell architecture used in the encoder and decoder,
namely, a long short-term memory (LSTM) variant and a gated
recurrent unit (GRU) variant.

To demonstrate the widespread applicability and efficacy of
our model, we conduct experiments on received signal strength
data collected over different kinds of networks including 4G
LTE, WiFi, Zigbee, WiMAX, and in an industrial network
setting. Additionally, we investigate the predictive capability of
our model on data collected in these networks on different time
granularities and in varying mobility scenarios. We compare
the performance of our model with two baselines—auto-
regression(1) and linear regression, and show that our deep
learning model outperforms the baselines in all scenarios. Our
experiments show that auto-regression(1), the model that uses
the least historical information performs the worst. Interest-
ingly, we observe that the deep learning model provides higher
performance gains for network settings with higher signal
strength variations and less seasonality, which demonstrate the
superiority of the model. Finally, we provide a discussion on
key design decisions in training methodology and insight into



hyper-parameter tuning of the model.

II. RELATED WORK

Wireless channel quality prediction is a well-studied do-
main, with the earliest work in this space being the two-state
Gilbert and Elliot Markov model. Research in this field can
be broadly categorized into—i) Markovian models that model
variations in the received signal strength, and ii) machine-
learning models for predicting future wireless channel con-
ditions.

The networking literature is rife with Markovian models
for wireless signal strength prediction. Sadeghi et al. [11] and
Bui et al. [3] provide detailed surveys of finite state Markovian
models designed for modeling the wireless channel and their
evolution over time. In [12], the authors design a coarse time
scale model for capturing the effect of shadowing on the
received power. Other recent work utilizing Markovian models
for channel prediction include spectrum sensing utilizing a
hidden bivariate Markov chain [2] and modeling channel
variations for vehicular networks [4]. While Markovian models
offer insight into wireless channel variations, prior work by
Wang et al. [13] note that higher order Markovian models
that utilize more historical information are necessary to obtain
better performance.

Prior work focusing on the use of machine learning for
channel prediction include predicting link quality for wire-
less sensor networks [9], identifying critical links [8] and
spatio-temporal modeling and prediction in cellular networks
[14]. Additionally, in recent years, deep learning techniques
have also been applied to solve various problems in wireless
communications. A comprehensive survey by Mao et al. [10]
identifies many opportunities for the use of deep learning
in wireless networks and emphasizes the capability of deep
learning models. Some examples of designing deep learning
models include device-free wireless localization using shad-
owing effects [15] and spectrum sharing in heterogeneous
wireless networks [16]. In contrast to prior work, we design a
deep learning model for received signal strength prediction and
demonstrate its applicability for a variety of network settings
and communication standards.

III. PROBLEM STATEMENT

Several factors cause sudden variations in the wireless chan-
nel quality, thus posing challenges in developing a generalized
framework for this prediction task. In this work, we develop an
encoder-decoder based sequence-to-sequence deep learning
predictive model, which is capable of accurately predicting
wireless channel variations irrespective of mobility pattern,
communication standard, and sampling rate. Sequence-to-
sequence models are ideally suited for problems that require
mapping input sequences to output sequences and have been
extensively used for tasks such as video captioning and natural
language translation [7]. Recent work [7] has also demon-
strated the applicability of these models for forecasting and
prediction purposes where the objective is to predict the future
based on past time series data. Therefore, for the problem

studied here, at each time T , our deep learning model uses
a sequence of past signal strength measurement values in a
window size of n (i.e., XT = [xT�n, xT�(n�1), ..., xT�1, xT ])
and predicts channel variations for k steps into the future (i.e.,
ŶT = [ŷT+1, ŷT+2, ..., ŷT+(k�1), ŷT+k]).

IV. SEQUENCE-TO-SEQUENCE DEEP LEARNING MODEL

We design an encoder-decoder based sequence-to-sequence
model for solving the channel quality (i.e., signal strength)
prediction problem (Figure 1). Our model has two main
components—an encoder and a decoder. Both the encoder
and decoder use RNN as the underlying neural network
architecture. RNNs are a deep neural network architecture
particularly suited for sequence-to-sequence modeling. RNNs
are a network of nodes organized into sequential layers,
each node in a given layer having a directed connection to
every other node in the next successive layer. Additionally,
RNNs also possess internal memory that remembers state, thus
making them attractive for sequence-to-sequence models for
temporal data. We refer the reader to Goodfellow et al. [7] for
additional details on the functionality of RNNs.

The encoder receives the past signal strength measurements
XT and produces a context vector C (i.e., the encoded state)
that summarizes the input sequence XT . The decoder receives
this as an input and in turn produces ŶT , the predicted channel
variations. An encoder-decoder based sequence-to-sequence
model has the benefit of not being constrained to use the same
sequence lengths for input and output (i.e., n 6= k) unlike
standard RNN architectures [7].
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Fig. 1: Encoder-decoder based sequence-to-sequence architec-
ture. In our model the “basic cell” is either LSTM or GRU.

In our model, both the encoder and the decoder operate
as a deep RNN unit with two stacked layers of basic cell
structures. We observe empirically that 2 stacked layers with
100 hidden units provide the best performance, and hence, we
consider it as the architecture of our model. We present in-
depth insight into the rationale behind using a stacked RNN



structure in addition to other design decisions in Section VI-C.
In a standard RNN, the nodes (the building blocks of a neural
network architecture) are usually composed of basic activation
functions such as tanh and sigmoid. Since RNN weights are
learned by backpropagating errors through the network, the
use of these activation functions can cause RNNs to suffer
from the vanishing/exploding gradient problem, that causes
the gradient to have either infinitesimally low or high values,
respectively. This problem hinders RNN’s ability to learn long-
term dependencies [7]. To circumvent this problem, LSTM and
GRU cells were proposed; they create paths through time with
derivatives that do not vanish or explode [7] by incorporating
the ability to “forget”. Therefore, we consider two variations
of our model (Figure 1) based on the basic cell structure
used internally at each multi-layer RNN, namely, an LSTM
version and a GRU version. As further elaborated in [7] both
LSTM and GRU cells are composed of a number of gated
units and they primarily differ in the number of gates and
their interconnections. LSTM consists of three gates namely,
the input gate, the output gate, and the forget gate that lets
it handle long-term dependencies. In comparison, the GRU
cell consists of two gates, a reset gate that combines the
current input with previous memory and an update gate that
determines the percentage of previous state to remember.

At each unfolded step t 2 [T � n, T ] in the encoder, the
signal strength measurement xt 2 XT is fed into the first cell
of the encoder. The output of this cell is subsequently fed
into the cell that follows. The final output from the encoder at
each unfolded step t is discarded. Once the encoder computes
the context vectors C1 and C2, they are fed into the decoder
for prediction. We initialize the decoder output using the final
signal strength measurement (i.e., xT ), due to the correlation
between ŷT+1 and xT [7]. At each unfolded decoder step t

0 2
[T + 1, T + k], the decoder uses its previous predicted value
ŷt0�1 as its input until ŷT+k is obtained. Our investigation
in Section VI also shows that for predicting 10 time steps
(k = 10) in the future using a historical data of 20 time steps
(n = 20) provides the best prediction performance.

A. Training the Sequence-to-Sequence model

At training time, we find the best estimates for the hidden
weight matrices and biases for each cell within the encoder
and the decoder. In our sequence-to-sequence architecture both
RNNs forming the encoder and decoder are trained jointly to
minimize the loss function given by the MSE (mean squared
error) of all predictions. All the parameters of this model are
trained iteratively using the backpropagation algorithm, which
propagates the error in the output layer through the recurrent
layers. We propose a general criteria for attaining convergence
at training time. Convergence is established when the observed
loss for 5 consecutive epochs is less than an MSE of 9,
which roughly corresponds to an average prediction error in
received signal strength of 3 dBm. In order to make the models
practically feasible, we limit the maximum number of training
epochs to 50, 000. However, for some datasets and some
models, it is possible that convergence is attained quickly. In

these scenarios, we train the model for at least 1000 epochs.
We note that this generalized stopping criterion makes the
model readily deployable rather than fine-tuning it for different
datasets. We empirically observe that this generalized stopping
criterion enables in achieving good prediction performance at
test time (Section VI).

In our experiments (at both training and test times), for
a given signal strength measurement sample, we use a slid-
ing window of one step to obtain XT , thereby achieving
the maximum overlap of sequences used. Additionally, we
investigate three possible training schemes—i) guided, ii)
unguided, and iii) curriculum, which are explained below. In
the training schemes below, yt0 refers to the actual signal
strength measurement available during training time at each
decoder unfolded step t

0.
Guided Training: In this scheme, at each unfolded decoder
step t

0 during training time, instead of feeding the previous
predicted result ŷt0�1, we feed the actual signal strength
measurement yt0�1 as the input. This scheme aims to achieve
faster convergence by guiding the model toward the nearest
local minima. However, since at test time, we don’t have
access to the actual signal strength values at the previous time
step, this scheme often suffers from poor generalizability at
test time [7].
Unguided Training: In contrast to the scheme above, un-
guided training uses the previous predicted value ŷt0�1 as the
input for the t

0 step of the decoder. This scheme provides
the opportunity to explore the solution space better, thus
increasing the generalizability of the model, often leading to
better prediction performance at test time/deployment.
Curriculum Training: This scheme uses a combination of
guided and unguided training to train the models. Here,
we start off with guided training so that the model can
make progress in the right direction initially when the model
typically needs more guidance and then proceed to make it
unguided so that the model can explore the solution space
and produce a generalized solution. For example, we can
implement this by splitting the training data into two sets
comprised of 30% and 70% of the original training dataset,
respectively. We then employ guided training for the first 30%
data. After the model converges, unguided training is adopted
for the remaining 70% of the data.

For all training schemes, once the initial training is com-
plete, we re-train the model on random sequences of length n

sampled from the training data amounting to 10% of the actual
training dataset while ensuring adherence to the convergence
criteria. This exercise improves the model’s exploration of the
solution space and its generalizability. These measures (un-
guided/curriculum training and training on random sequences)
and the incorporation of L2 regularization reduce overfitting
the model to training data. We will see in Section VI-C that
unguided training yields the best results for the datasets used
in the paper. Therefore, we use unguided training in our final
evaluation.



V. DATASETS AND DATA PREPROCESSING

To demonstrate the widespread applicability of our model,
we consider multiple received signal strength measurement
datasets collected at the end hosts for five different networks—
4G LTE, WiFi, an industrial network operating at 5.8 GHz
channel gain within a factory environment, Zigbee and
WiMAX. The 4G LTE network measurements and the WiFi
measurements used in this paper are collected by us, while the
other datasets are publicly available [1], [5]. We next describe
the network settings, characteristics, and preprocessing steps
undertaken for each dataset.

1) 4G LTE Measurements: We collect Reference Signal
Received Power (RSRP) measurements using a Motorola G5
smartphone over T-Mobile and AT&T 4G LTE networks in
vehicular and pedestrian mobility scenarios. The vehicular
and pedestrian mobility traces are approximately 50 and 20
minutes in duration and are collected at a granularity of 1
second. Prior work [12] has demonstrated the need for wireless
channel prediction on the seconds’ timescale for improved
video streaming over cellular networks.

2) WiFi Measurements: We collect two datasets containing
received signal strength indicator (RSSI) using a Motorola G5
smartphone on a campus WiFi network at sampling rates of
1 and 2 seconds respectively. Each measurement is carried
out for approximately 50 minutes amidst pedestrian mobility
(indoor and outdoor). Prior work [12] has demonstrated the
need for wireless channel prediction on the seconds’ timescale
for designing block-based bit rate adaptation algorithms for
WiFi networks.

3) Industrial Network Measurements: This dataset contains
wireless channel measurements collected over a time-variant
and frequency-variant 5.8 GHz channel gain within a factory
environment in the presence of pedestrian mobility [1]. We
consider three such datasets, each collected using a stationary
pair of antennas separated by a distance of 3.1m, 10.0m and
20.4m respectively. Each dataset contains approximately 1000
samples.

4) Zigbee Measurements: We consider signal strength mea-
surements collected over a wireless sensor network operat-
ing under Zigbee containing around 2000 samples [5]. The
datasets were collected using two sensor nodes communicating
with each other over fixed distances of 10m and 15m for a
power level of 31 (0 dBm). We fill potential missing values
indicative of packet loss with random signal strength values
obtained between the smallest recorded RSSI and 10 units
below that.

5) WiMAX Measurements: We consider three separate
datasets containng RSSI measurements collected over a
(802.16e) WiMAX network [12], one vehicular and two pedes-
trian (one indoor and the other outdoor) mobility datasets.
In each of the datasets, RSSI measurements are recorded at
the granularity of one second. The indoor pedestrian, outdoor
pedestrian and the vehicular mobility traces are approximately
10, 38, and 26 minutes in duration, respectively.

VI. EXPERIMENTAL EVALUATION

In this section, we present experimental results that demon-
strate the widespread applicability and robustness of the deep
learning model. The main metric used for evaluation is the
root mean squared error (RMSE) that captures the error of the
absolute prediction. Let yij be the i

th test sample for the j

th

prediction step where j 2 [1, k], and ŷij be the predicted value
of yij and h the number of test samples. The RMSE is given
by Equation 1.

RMSEj =

sPh
i=1 (ŷij � yij)

2

h

(1)

We compare the performance of our model with respect
to two baselines—linear regression and auto regression(1).
In our experiments, the linear regression baseline considers
a history of previous 20 samples to predict the future. We
consider the auto regression(1) baseline because prior work
related to channel modeling has been mainly focused on
designing Markov chains to capture the underlying channel
correlation. The default parameters used for our models are—
history window size = 20, number of future prediction steps =
10, number of stacked layers = 2, and number of hidden units
per cell = 100.

A. RMSE Results for 4G LTE
In this subsection, we discuss RMSE results in detail for

the 4G LTE network to demonstrate the superior performance
of our model. We then discuss its performance on other
networks. Figures 2 and 3 show the performance of the
deep learning model and the baseline approaches for 4G LTE
networks (T-Mobile and AT&T) for pedestrian and vehicular
mobility scenarios. We observe from Figures 2(a) and 2(b)
that the deep learning model with either LSTM or GRU
cells significantly outperforms the linear regression and auto-
regression(1) models in both mobile settings. We observe that
in comparison to linear regression and auto regression(1),
the RMSE values for the deep model increase slowly as the
number of time steps increases. This means that the our model
is able to predict further into the future considerably better than
the baseline approaches. Additionally, based on these results
and those from all networks, we observe that there is no clear
winner between the deep learning models, with both variants
outperforming one another depending on the network.

We also observe from our experiments on different networks
that auto-regression(1) performs the worst, with its first step
prediction being significantly worse in comparison to the other
approaches. Figures 2(a) and 2(b) also show that the prediction
performance of auto-regression(1) gradually deteriorates (or
almost remains constant) over time. These results suggest that
making future predictions based solely on the signal strength
measurement obtained in the previous time step is insufficient
and not useful. As auto-regression(1) fails to successfully
capture the temporal correlation of the wireless channel and
provides poor predictive performance, in the remaining figures,
we only plot the performance results of our deep learning
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Fig. 2: 4G LTE T-Mobile experiments

models and linear regression. Figure 2(c) shows a qualitative
comparison of the actual vs. the prediction results of the LSTM
model with respect to linear regression for the pedestrian
mobility scenario for the T-Mobile network. The figure depicts
a prediction timeframe of 200 seconds considering the 5th

time step prediction for each model variant. We observe
that the performance of linear regression is significantly poor
compared to the deep learning model. This correlates with
RMSE variations shown in Figure 2(a). Similarly, from Figure
3, we observe that the deep learning models outperform linear
regression for the 4G LTE AT&T network.
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Fig. 3: 4G LTE AT&T experiments

B. RMSE Results for Other Networks
In this subsection, we present performance results com-

paring the deep model with linear regression for all other
networks (i.e., WiFi, industrial network operating in the 5.8
GHz range, Zigbee and WiMAX) described in Section V.
Figures 4(a), and 4(b) outline the prediction performance for
different sampling rates (1s, and 2s) in a WiFi network for a
pedestrian mobility scenario. Once again, we observe that the
deep learning model outperforms linear regression in all cases.
As all measurements are undertaken in a pedestrian mobility
scenario, there is little variation in physical position and mo-
bility between consecutive samples at the lower sampling rate.
This makes it an easier prediction task, thus resulting in linear
regression and the deep learning model having comparable
performance (Figure 4(a)).

In the interest of space, in Table I, we present the average
predictive performance improvement (over 10 future steps) for
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Fig. 4: WiFi experiments

Network Type Seq-to-seq
LSTM (%)

Seq-to-seq
GRU (%)

Industrial
Network

Distance = 3.1m 18.8 15.0
Distance = 10m 27.1 30.9
Distance = 20.4m 39.7 24.9

Zigbee Distance = 10m 10.5 14.0
Distance = 15m 5.90 6.80

WiMAX
Pedestrian (Outdoor) 4.50 3.10
Pedestrian (Indoor) 33.1 25.6
Vehicular 38.0 45.3

TABLE I: Predictive performance of other networks. Average
performance increase (%) with respect to linear regression.

both LSTM and GRU based models with respect to linear
regression for the remaining networks. While it is clear that the
deep model outperforms the base case, it is also evident that
there is no clear winner between the LSTM or GRU versions.
From our experiments, we also observe that for the stationary
industrial setting, the performance gap increases with distance,
primarily to the presence of higher number of obstacles
that result in increased signal strength variation. While deep
learning beats linear regression in all cases, we note that the
performance gap is less for the Zigbee and WiMAX outdoor
pedestrian mobility experiments. We hypothesize the seasonal
nature of the channel variations and low overall fluctuations in
the channel in these datasets as the main reason for increased
performance of linear regression.

C. Discussion on Design Decisions

In this subsection, we discuss hyper-parameter tuning and
the rationale behind key design decisions in training. Here, we



show all findings for the LSTM variant of our model for the
4G LTE T-Mobile pedestrian mobility dataset. However, we
note that these insights hold true for the GRU version as well
as for other networks.
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Fig. 5: Impact of parametric changes and training method on
performance

1) Hyper-parameter tuning: Figures 5(a), 5(b), and 5(c)
show the predictive performance of our model for variations in
parameters such as number of stacked layers, number of hid-
den units in a cell, and the history window size, respectively.
We experimentally validate that number of stacked layers = 2,
number of hidden units in a cell = 100 and history window
size = 20 in general provides the best performance for our
model. We hypothesize from these results that overly complex
models with larger number of hidden units per cell and greater
depth may be attempting to learn additional complexity in
the channel variations than what is present, thus generalizing
poorly to test data. Similarly, Figure 5(c) shows that consider-
ing the past 20 signal strength measurements is sufficient for
forecasting future channel variations. Interestingly, it illustrates
that “more” history does not always carry more information
about the channel.

2) Discussion on training: We next discuss the rationale
behind adopting a particular training methodology for our
model. Figure 5(d) shows the prediction performance of
the deep learning model for four training methodologies—
unguided learning, curriculum learning (with first 30% of data
as guided), curriculum learning (with first 60% of data as
guided), and guided learning. Even though unguided training
usually requires more epochs to converge, we observe that
it provides the best performance at test time for all network
settings. This is due to the larger solution space explored by
this method in comparison to the other methods.

VII. CONCLUSION

In this paper, we investigated the wireless channel quality
prediction problem in wireless networks. We developed an

encoder-decoder based sequence-to-sequence deep learning
model that takes prior channel quality (i.e., received signal
strength) into account to predict future signal strength vari-
ations. We compared the performance of the deep learning
model with the auto-regression(1) and linear regression base-
lines and observed that our model significantly outperforms
these baseline models for different network settings. In future,
we intend to study the robustness of our model by investigating
the performance of the trained model on previously unseen
data. We also plan to explore the signal strength prediction
problem from a more interpretable graphical modeling per-
spective.
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