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Abstract—Modern scientific workflow systems lack strong
support for protecting the scientific data and their provenance
from being forged or altered. As a result, scientists may be misled
into believing that they have found a specific result, but only to
discover later that the data they used have been altered and
should not be trusted. To address this limitation, we develop
a new system called SciBlock that leverages recent advances
in blockchain technology to provide a tamper-proof and non-
repudiable storage for scientific workflow provenance. SciBlock
provides primitives that allow users to query scientific work-
flow provenance data efficiently. Moreover, SciBlock offers the
capability of invalidating wrong or outdated scientific workflow
provenance data without removing them from the blockchain.
We conducted extensive experiments to evaluate the performance
and scalability of SciBlock. Our experimental results show that
SciBlock offers a promising approach to enhancing scientific
research integrity in a distributed collaborative environment.

I. INTRODUCTION

Scientific workflows are developed for collaborative re-
search projects that involve multiple geographically distributed
organizations. Sharing of large datasets and computational
methods across different administrative domains is critical for
scientific collaborations in many areas such as high energy
physics and bioinformatics.

The trustworthiness of scientific discoveries relies on the
integrity of the data processed by scientific workflows and their
underlying cyberinfrastructure. The lack of effective mecha-
nisms for protecting the data integrity in modern scientific
workflow systems may lead to undesirable scientific frauds
or disputes: a scientist or a graduate student may forge/alter
datasets, results, or computation to get papers published; a
disgruntled member of a research group may forge data or
modify the specification of the group’s workflow to distort the
output of the workflow; a malicious user may also forge a
piece of data, post the data on a website, and claim that the
data is produced by a scientific workflow. As a result, scientists
may be misled into believing that they have found a specific
result, but only to discover later that the data they used has
been altered and should not be trusted.

In this work we develop a new system called SciBlock to
provide a tamper-proof and non-repudiable storage for scien-
tific workflow provenance data in a distributed collaborative
environment. The provenance of a scientific workflow captures
the derivation history of a data product and is hence essential
to the reproducibility of scientific discovery [44]. To over-
come the difficulty of establishing trust relationships in dis-
tributed environments, SciBlock leverages recent advances in

blockchain technology to ensure the data processing integrity
of scientific workflows. Built upon the distributed consensus,
transaction verification, and record immutability features of
blockchain, SciBlock offers the capabilities of verifying that a
data product was generated by a specific workflow, querying
how a data product is derived from a scientific workflow, and
checking whether a specific scientific result is still valid.

The application of blockchain in SciBlock entails transfor-

mation from logs produced by scientific workflows that contain
provenance information to transactions that are amenable
to blockchain processing. We, however, cannot process sci-
entific workflow provenance as blockchain transactions in
a straightforward manner due to the following challenges.
Firstly, once a provenance record is added to a blockchain,
it is impossible to revoke the change, assuming that at least
51% of the participating peers would not collude to subvert
its operation [10]. However, a scientific workflow may be
modified frequently to fix bugs or add new features, and hence
some of the data products generated previously may become
invalid later. As a result, it is necessary to invalidate such data
products in the blockchain. In this work, we propose a new
mechanism to invalidate data products without deleting them
from the blockchain. Secondly, blockchain allows users to
verify the existence of a transaction efficiently, but offers no or
limited capabilities for querying transactions by specific fields.
Computing the derivation history of a data product in a large
scientific workflow requires efficient queries of provenance
records by their output fields. SciBlock addresses this issue
by an off-chain approach that uses a combination of query
on unencrypted database and blockchain verification to speed
up the query process, while ensuring the trustworthiness of
the query results. SciBlock’s off-chain approach differs from
the existing off-chain approaches in that SciBlock not only
verifies the off-chain provenance records, but also the deriva-
tion history computed from the off-chain records. Because the
database may be modified or deleted by unauthorized users
and multiple derivation graphs may be computed for a specific
scientific result (due to the execution of a scientific workflow
multiple times), it is non-trivial to verify the correctness of the
derivation history computed from the database.

In summary, our main contributions are as follows:

e« We propose an off-chain approach that augments the
blockchain-based transaction verification with queries of
local auxiliary databases to expedite blockchain queries
and data derivation history computation, and formally



prove the correctness of this approach.

+ We propose an efficient mechanism to invalidate wrong
or outdated provenance records without removing them
from the blockchain. Because our invalidation mechanism
enables SciBlock to keep a complete history of workflow
modifications, it can be used to prevent dishonest re-
searchers’ attempts of altering or forging scientific results.

+« We have implemented SciBlock on top of the private
Ethereum blockchain, a popular generic open-source
blockchain platform, and conducted extensive experi-
ments to evaluate the performance and scalability of
SciBlock. Our experimental results show that our off-
chain approach significantly reduces the query time and
the time taken to compute the derivation history.

The rest of the paper is organized as follows. Section II
presents related work. Section IIl provides an overview of
scientific workflows, provenance, and blockchain. The design
of SciBlock is given in Section IV. Sections V and VI
present techniques for data derivation history computation and
provenance invalidation, respectively. Section VII provides the
implementation details of SciBlock. Our experimental results
are given in Section VIII. Section IX concludes the paper.

II. RELATED WORK

Blockchain technology has been applied in a number of
domains, including finance [47], banking [50], insurance [37],
healthcare [9], etc.

A number of researchers have proposed techniques to secure
provenance systems with centralized storage (e.g.[48], [41],
[17], [34], [14], [51], [33]). In such systems, if the central
server is compromised, then the entire data trail cannot be
trusted anymore.

There is limited work in the investigation of the blockchain
as a platform to secure scientific workflow provenance. Works
in [13], [20], [27], [29] emphasize the importance of protecting
provenance in scientific research and point out the potential
applicability of blockchain as an enabler for creating such
a platform. Ramachandran et al. [40] proposed a blockchain
based scientific system called SmartProvenance, which auto-
matically verifies the provenance records by utilizing a voting
mechanism. DataProv [39] is a distributed system that securely
captures the scientific data, which again uses a voting based
mechanism to obtain the approval before storing data entries
to the platform. ProvChain [31], [42] is a blockchain based
data provenance system that provides assurance for cloud
storage applications. DroneChain [32] is a public blockchain
platform for securing data with the limited battery and process
capability of drones. Tosh et al. [46] described design chal-
lenges and opportunities in developing proof-of-stake for data
provenance in cloud platform. [38] uses a private blockchain
based network to support data accountability and provenance
tracking for European union residents’ data. Brooks et al. [49]
presented a blockchain system that can be used to secure data
provenance outside users control. BlockFlow [18] is a work-
flow provenance system built on top of E-Science ECOsystem
and ProvHL [19] is a provenance metadata storage system built

on top of Hyper-ledger Fabric [8]. The above works neither use
off-chain approaches to improve the efficiency of blockchain
query nor consider the invalidation of provenance data.

Chen et al. [15] proposed CertChain, a public audit scheme
for TLS connections based on the blockchain technology. The
work in [16] uses blockchain to share scientific workflow
provenance. The above works store the data products, but not
the provenance, off-chain. MultiChain [24] uses an off-chain
hashing solution to improve the scalability of the blockchain.
[21] describes two ways to extend the smart contracts with
off-chain logic and [22] discusses five off-chain patterns.
In [26], the authors investigated the potential of increasing
the scalability of the blockchain through off-chain storage
and computation. Bitcoin lightning network [28] is an in-
stant, high-volume micro-payment system operating outside
the blockchain. SciBlock’s off-chain approach differs from
the above approaches in that SciBlock not only verifies the
off-chain provenance records, but also the derivation history
computed from the off-chain records.

Sigurjonsson et al. [43] propose to use blockchain and hash
to protect the integrity of the workflow provenance and use
InterPlanetary File System protocol for provenance version
control. Although they also store the provenance both off-chain
and on-chain, the execution time is stored only in the local
database. Thus, if the local database is tampered, the database
cannot be recovered from the blockchain. They also propose to
use hash to protect the integrity of workflow provenance stored
in the local database once the workflow completes the execu-
tion. This approach, however, does not prevent the provenance
from being modified before a workflow finishes the execution.
In addition, their version control prevents provenance records
from being sent to other nodes in blockchain, but SciBlock’s
invalidation mechanism does not.

III. BACKGROUND

This section provides an overview of scientific workflows
and workflow provenance. As blockchain is the main method-
ology used in this work to ensure the integrity of workflow
provenance, we also present a brief introduction to it.

A. Scientific Workflows and Provenance

Scientific workflow is a popular cyberinfrastructure
paradigm to accelerate scientific discoveries and facilitate col-
laboration between geographically distributed organizations.
Figure 1 shows a scientific workflow for performing in-
tragenomic gene conversion analysis [7]. Each workflow task
(Th — Tx) represents an individual computational step. The
workflow takes as its input the protein sequences of a given
genome and identifies all its multi-gene families (task 77).
A multi-gene family is then selected by the user and its
associated DNA sequences are retrieved (task 75). Next, a re-
combination analysis is performed on the retrieved sequences
(task T3) in two steps: a multiple DNA sequence alignment
step (task 7T};) and a gene conversion detection step (task 75).
The latter is implemented by GENECONYV, an off-the-shelf
program (task 7%), with an input data file preparation step
(task Tg). A scientific workflow may be executed by multiple
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Fig. 1. A Gene Conversion Analysis Workflow.
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Fig. 2. A sample workflow provenance.

geographically distributed organizations. For example, tasks
Ty and T5 may be executed by organization O; at location L
while task 73 by organization Og at location La.

The provenance of a scientific workflow captures the deriva-
tion steps of a data product over a set of computational tasks.
Figure 2 gives a sample provenance for the workflow in
Figure 1, which is represented in a notation similar to the
Open Provenance Model [4]. Circles represent data products,
rectangles represent tasks, octagons represent users performing
the tasks, and edges represent dependency relationships. Edge
d; < Tj specifies that data product d; is the input to task Tj
and edge T; < d; specifies that d; is the output of task T7}.
Edge u<=T} specifies that task T; was executed by user u.

B. Blockchain

Blockchain was first proposed in Bitcoin [36] to protect
against double spending and modification of transactions.
A blockchain consists of one or more blocks. Each block
contains a block header and a number of Bitcoin transactions.
To prevent unauthorized modification or forgery of blocks,
each block in the blockchain is linked to its previous blocks
by storing the hash of its parent block header. The Bitcoin
blockchain uses Merkle trees [11] to efficiently verify whether
a Bitcoin transaction exists in a block. The Merkle tree is
created by repeatedly hashing pairs of transactions until it
reaches the Merkle Root (i.e., the root hash). A Merkle tree
generated from four transactions A, B, C, and D is given
in Figure 3. When a Bitcoin transaction is added to the
blockchain, the user receives a receipt from the blockchain
which consists of the Merkle root and all hashes needed to
verify the transaction. For example, to verify that transaction
B exists in the Merkle tree in Figure 3, the receipt would
contain the Merkle root (i.e. Hash ABCD), Hash A, and Hash
CD. If Hash(Hash(Hash A, Hash(B)), Hash CD) is equal to
the Merkle root, then the transaction exists in the blockchain.

The blockchain is a distributed ledger, in which the data
is distributed across peer-to-peer networks to avoid a center
point for attackers to corrupt the blockchain. Each peer in the
peer-to-peer network has its own copy of a blockchain and all
copies of the blockchain are synchonized across the network.

| Merkle Root (Hash ABCD) J

Hash CD

Transaction D |

Hash AB
N

| Hash | Hash B |

Transaction A I Transaction B I Transaction C |

Fig. 3. An example Merkle tree.
IV. DESIGN OF SCIBLOCK

This section presents the design of SciBlock. As mentioned
in Section III.A, scientific workflow tasks may be executed by
multiple organizations. Therefore, the integrity of a scientific
workflow is ensured collectively by the integrity of all indi-
vidual computational tasks, assuming that the communication
channels among all the tasks are tamper resilient, e.g. protected
by network security protocols such as SSL/TLS and IPSec.

SciBlock is designed as a cyberinfrastructure shared by
geographically distributed organizations that collaboratively
execute a scientific workflow, to provide integrity assurance
of scientific workflow provenance. It is suitable for loosely
connected collaborative research environments where there
lacks a universally trusted authority to validate the integrity
of scientific workflows (which is often the case in practice).
Towards this end, SciBlock includes key functionalities to
verify that a data product was generated from a specific
workflow, examine the derivation history of scientific results,
and verify that a scientific result is valid.

The architecture of SciBlock is illustrated in Figure 4.
SciBlock is built upon a permissioned blockchain network
with proof of authority (POA) consensus whose nodes are
distributed across multiple sites. The pre-authenticated nodes
in this permissioned blockchain network are contributed by
various scientific organizations, such as universities and na-
tional laboratories, who have the incentive to ensure that their
research is credible. Although pre-authentication introduces
additional operational overhead, it circumvents the difficulty
of designing both the costs for researchers to submit their
provenance records and the incentives for miners who validate
these records if we use a public permissionless blockchain to
build SciBlock.

To prevent researchers from cheating, SciBlock stores sci-
entific workflow provenance data represented as provenance
records in blockchain. As shown in Table I, each provenance
record contains a subset of provenance information related to a
workflow task, including the task ID, the input to the task, the
output generated by the task, the execution time, and the user
who executed the task. We store the hash and the path of the
input and output data in provenance records, instead of the real
data, to reduce the size of provenance records. By computing
the hash of a piece of data and comparing it against the hash
stored in the corresponding provenance record, we can verify
the integrity of the data.

The current prototype of SciBlock uses the DATAVIEW,
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Field Description

task The ID of the workflow task executed

input Input to the workflow task (path and hash)

output | Output generated by the workflow task (path and hash)
time Execution time

user The person who executed the workflow task
TABLE I

THE PROVENANCE RECORD.

Synchronizing authorized modification

Fig. 4. The architecture of SciBlock.

a big data workflow management system [30], to execute
scientific workflows. The provenance record generator gen-
erates provenance records during the execution of a workflow,
and adds provenance records to the blockchain to prevent the
records from being altered or deleted. The provenance records
are also added to locally maintained databases, which are used
for improving the efficiency of blockchain query (discussed
in Section V). Although each peer in a private network has
its own copy of the blockchain, any of its modification to
the blockchain is synchronized automatically among all peers.
When a data product generated by a workflow is not valid any
more (e.g. the workflow task that generated the data has bugs),
SciBlock adds an invalidation transaction to the blockchain
and the invalidation module invalidates the corresponding
provenance records. Users query the derivation history of sci-
entific results through an HTML web interface. The derivation
history generator computes the derivation history and returns
a derivation graph to the user. The derivation history generator
also informs the user if any data in the graph is invalid.

In a nutshell, the characteristics of SciBlock as described
above can be summarized as follows:

« Distributed consensus: There is no centralized entity in
SciBlock to synchronize the efforts of collecting prove-
nance records submitted by different entities. Instead,
the blockchain allows these geographically distributed
entities to agree upon what provenance records have
already taken place at any time point.

o Tamper-proof: Once a provenance record has been val-
idated and added to the blockchain, it is impossible to
revoke the change, assuming that at least 51% of the
participating nodes in SciBlock would not collude to
subvert its operation [10].

« Non-repudiation: SciBlock is built upon a permissioned
Ethereum network with POA consensus, inside which
each participating peer has a private-public key pair. Each
individual provenance record is signed by the private
key of the entity who has executed the corresponding
workflow task. Hence, the execution of a workflow task
cannot be repudiated by this entity later, assuming that
its private key is secure.

« Efficiency: Due to the inefficiency of querying prove-

Fig. 5. Derivation graph.

nance records by their fields within a large blockchain,
SciBlock augments the blockchain with locally main-
tained databases to expedite transaction queries while still
ensuring the aforementioned properties.

Our threat model assumes that the provenance generator
and data transmission channels, from the place where the
workflow tasks are executed to the place where the provenance
records are submitted, are protected using the existing security
mechanisms (i.e., the provenance information is not tampered
before it is submitted to SciBlock). Using the provenance
information contained within provenance records, we can
develop a variety of high-level functionalities that can help
scientists to verify the integrity of scientific findings or revise
existing ones. In this work we focus on two useful operations:

o Computation of derivation history: A scientist can use
SciBlock to figure out how a data product — which can
be an interesting scientific finding — is derived from the
raw data available to the scientific community.

« Invalidation of provenance records: Modification of a
workflow task would invalidate all the provenance records
it has produced.

Sections V and VI elaborate on the above two functionali-
ties, respectively.

V. COMPUTING DERIVATION HISTORY

SciBlock offers scientists the capability of querying the
derivation history of a scientific result, which enables scientists
to verify the correctness of the result and to reproduce the
result. The derivation history of a data product is represented
as a derivation graph. Let pr be a provenance record. We
use pr.task, pr.input, pr.output, pr.user, and pr.time to
represent the task, input, output, user, and time stamp fields
in pr, respectively. Below, we define the derivation graph.

Definition 1 (Derivation/Derivation Graph): Let pry and
pro be two provenance records. pro is derived from prq,
denoted as pr; — pro, if there exists in € prg.input such
that in € pri.output. A derivation graph G = (V, E) is a
directed acyclic graph (DAG), where each node pr € V' is a
provenance record and each edge e € F is a derivation of the
form prqy — pro. O



An example derivation graph is given in Figure 5. In this
graph, prsy is derived from prq because d; € pri.output and
dy € pra.input.

Computing the derivation history of a data product in a large
scientific workflow requires efficient queries of transactions
by their output fields. We implemented two primitives for
querying provenance records by fields — one uses the brute
force search and the other is based on the Bloom filter [1], a
probabilistic data structure developed to improve the efficiency
of search (details are given in Section VII). Our experimental
results show that it takes 23 — 30ms and 20 — 27ms to query
one transaction with the brute force search and the Bloom-
filter based search, respectively.

In this section, we propose to use database query combined
with blockchain verification to expedite the query process,
while ensuring the trustworthiness of the query result. The
provenance records are stored in both blockchain and lo-
cally maintained databases (called provenance database). Each
provenance record stored in the database consists of all fields
in Table I, as well as a “valid” field, which specifies whether
the output data in the record is valid. The provenance database
is protected by existing authentication and access control
mechanisms, but is neither encrypted nor hashed in order
to enable efficient query. Therefore, the provenance records
stored in the database may be deleted or altered. As a result,
for every provenance record returned from a database query,
we verify that the record exists in the blockchain (using
Ethereum API getTransaction). In the rest of the paper, we
use the term blockchain verification to represent the process
of checking whether a provenance record returned from a
database query exists in the blockchain. Our current prototype
of SciBlock uses SQLite and MySQL as provenance databases.
Our experimental results show that querying SQLite (MySQL)
combined with blockchain verification is about 7x (3.5x%)
faster than querying the Ethereum blockchain directly.

A derivation graph is either a complete or a partial graph,
as defined below. We use the term workflow input to represent
the data that is an input to a workflow task, but not an output
of any workflow task (i.e. raw data or data generated from
another workflow).

Definition 2 (Complete/Partial Node): A node v in a deriva-
tion graph G = (V,FE) is a complete node if for every
in € vanput, in is either a workflow input or there exists
u € V such that in € u.output. A node v is a partial node if
v is not a complete node. o

Definition 3 (Complete/Partial Derivation Graph): A deriva-
tion graph G is a complete derivation graph iff all nodes
in G are complete nodes. A derivation graph G is a partial
derivation graph iff G is not a complete derivation graph. O

A partial derivation node/graph is computed either be-
cause not all provenance records generated are added to the
blockchain/database or because some provenance records in
the database were deleted/altered by unauthorized users.

Algorithm 1 gives the pseudocode for computing the deriva-
tion history of a provenance record pr. The algorithm first

Algorithm 1 Computing the derivation graph

1: procedure derive_history(pr)
2: if pr does not exist in the blockchain then
3: print “error: pr does not exist in the blockchain™; return;

4: if all inputs in pr are workflow inputs then

5: return ({pr},0);

6: V =workset = {pr}; E =list =0

7: while workset # () do

8: remove w from workset;

9: for every in € w.input do

10: if there exists pry such that in € pri.output then

11: if pri exists in the blockchain then

12: E=EU{pri - w}

13: if pr1 ¢ V then

14: workset = workset U {pr1};

15: V=VUi{pr};

16: else

17: Print “error: database and blockchain are incon-
sistent”’; return

18: else

19: if in is not a workflow input then

20: add in to list; > partial graph

21: if list == () then return (V, E);

22: for every provenance record pr in blockchain do

23: if there exists out € pr.output such that out € list then

24: Print “error: database and blockchain are inconsistent”;
return;

25: return (V, E);

checks whether pr is present in the blockchain, and if not,
the algorithm reports error (lines 2— 3). If pr is present
in the blockchain and all inputs in pr are workflow inputs
(which means that ¢r is not derived from any other provenance
records), then the algorithm returns a graph containing one
node pr (lines 4-5). Otherwise, the algorithm computes the
derivation graph for pr from the provenance database (lines
6 - 15). If a complete derivation graph is computed and all
nodes in the graph are present in the blockchain, then the
algorithm returns the graph (line 21). Otherwise, for each input
of partial nodes that has no derivation (stored in [list), the
algorithm checks whether a derivation can be computed for
the input in the blockchain (line 23). This is used to ensure
that the database is not modified. If such a derivation exists,
then the algorithm reports inconsistency between the database
and the blockchain (lines 24); otherwise, the algorithm returns
the graph computed (line 25).

We use G(pr) to represent the derivation graph computed
for provenance record pr. Theorems 1 and 2 prove the
soundness and the completeness of Algorithm 1, respectively.

Theorem 1 (Soundness): Let pr be a provenance record. If
Algorithm 1 returns a derivation graph G(pr), then G(pr) can
be computed from the blockchain.

Proof: If Algorithm 1 returns a derivation graph G(pr),
then for every edge pry — pre in G(pr), there exists
in € proanput such that in € pri.output. Because the
algorithm returns G(pr), according to line 11 of the algorithm,
pr1 and pro are present in the blockchain. As there exists
in € proanput such that in € pri.output, pri — pro can



be computed from the blockchain as well. The theorem holds.
|

Theorem 2 proves the completeness of Algorithm 1, which
states that for every derivation graph G(pr) computed from the
blockchain, Algorithm 1 either returns an equivalent derivation
graph (defined below) or reports inconsistency between the
database and the blockchain. Note that Theorem 2 does not
guarantee that for every derivation graph computed from
the blockchain, the same graph can be computed from the
provenance database. As a workflow task may be executed
multiple times, multiple provenance records may have the
same input, task, and output fields but different execution
times. Therefore, multiple derivation graphs may be computed
for a provenance record. Algorithm 1 returns only one of
the derivation graphs. It is possible that some provenance
records have been deleted from the database, but the deleted
records do not affect the derivation graph returned from the
database. Below, we define equivalent derivation graphs and
proves Theorem 2.

Definition 4 (Equivalent Provenance Records/Derivation
Graphs): Two provenance records pr; and pry are equiv-
alent, denoted as pri = pro, iff priinput = praoanput,
pri.output = pro.output, and pry.task = pro.task. Two
derivation graphs G(pr) and G’(pr) are equivalent, denoted
as G(pr) = G'(pr), iff for every edge pri — pray in G(pr),
there exists an edge pri — prj in G’ (pr) such that prq = pr}
and pro = prh, and vice versa. O

As each workflow task is deterministic, two provenance
records have the same output only if they were generated from
the same workflow task with the same input. Therefore, all
derivation graphs computed for a specific provenance record
are equivalent.

Theorem 2 (Completeness): Let pr be a provenance record.
If a derivation graph G(pr) can be computed from the
blockchain, then Algorithm 1 either returns a graph G’(pr)
such that G'(pr) = G(pr) or reports error.

Proof: The theorem is proved by induction on the number
of nodes in the derivation graph.

Base case: Assume that G(pr) consists of one node pr.
Then either (1) all inputs in pr are workflow inputs, or (2) for
all in € pr.input that are not workflow inputs, there does not
exist pr’ in the blockchain such that in € pr’.output. In case
(1), Algorithm 1 returns G(pr). In Case (2), if the database
is consistent with the blockchain, then Algorithm 1 returns
G(pr). Otherwise, if there exists in € pr.input and pr’ in
the database such that in € pr’.output, then because pr’ does
not exist in the blockchain, Algorithm 1 returns an error (lines
16-17). The theorem holds.

Induction: Assume that the theorem holds for all derivation
graphs that have < k£ nodes. We now prove that the theorem
holds for derivation graphs that have k+1 nodes. Let G(pr) be
a derivation graph computed from the blockchain that contains
k 4+ 1 nodes and prsy be the last node computed in this graph.
We now prove that if pro — pry can be computed from the
blockchain, then there exist pr}, and prj such that pry, — pr}
can be computed from the database and pr; = prj and

pra = prh. We prove the theorem by contradiction. Assume
that such an edge cannot be computed from the database. By
induction hypothesis, there exists prj in the database such
that pri = pri. Because the edge cannot be computed from
the database, there does not exist a provenance record prf, in
the database such that pry, = pro. Therefore, pr] is a partial
node in the derivation graph computed from the database.
Let d € (pre.out N pri.in). Line 23 of Algorithm 1 would
check whether there exists a provenance record pr in the
blockchain such that pr.out = d. Because prs.out = d and
pro is in the blockchain, the algorithm reports an error (line
24) instead of returning a derivation graph. This contradicts to
the assumption. Therefore, the theorem holds. d

VI. PROVENANCE INVALIDATION

Once a provenance record is added to the blockchain, it
is impossible to revoke the change, assuming that the honest
nodes together possess more than half of the mining power.
A workflow task may be modified to fix bugs or add new
functionalities. When a workflow task is modified, the data
previously generated from this task and all data derived from
it are not valid any more and hence need to be invalidated.
To address this issue, this section presents a novel technique
to enable users to invalidate wrong or outdated provenance
records without removing them from the blockchain. SciBlock
currently supports the invalidation of provenance records gen-
erated prior to specific time. For example, if a workflow task
is modified, then the scientists can re-run the workflow and
invalidate all previous provenance records.

We use invalidation transactions to invalidate provenance
records. The invalidation transaction contains one field time;
provenance records with an execution time prior to time
will be invalidated. When an invalidation transaction is added
to a blockchain, the invalidation module adds the hash of
all provenance records invalidated by this transaction to the
blockchain. As an invalidation transaction is often submitted
after a task is modified to generate new data, to prevent users
from mistakenly adding an invalidation transaction, we provide
an option for the user to check whether a corresponding new
data product has been generated for each invalidated data
product. If the invalidation condition does not hold, then the
user decides whether he/she wants to proceed.

Algorithm 2 gives the pseudocode for invalidating prove-
nance records. Procedure check_invalidate returns the task
field (tasklist) of all provenance records that have an execu-
tion time later than time. Procedure invalidation invalidates
transactions. If the invalidation condition is turned off, then the
algorithm invalidates the corresponding provenance records
(lines 2-5). Otherwise, for every provenance record whose
execution time is earlier than ¢ime, the algorithm checks
whether its task field is in tasklist and if so (i.e. the
invalidation condition holds), invalidates the record (lines 8
— 11); otherwise, the algorithm asks the user whether she
wants to invalidate the record. To improve the efficiency, the
algorithm first checks whether the invalidation condition holds



in the provenance database and then verifies the result in the
blockchain.

Algorithm 2 Transaction Invalidation

1: procedure invalidation(time, opt)

2: if opt == 0 then

3 for every pr in blockchain where pr.time < time do

4: invalidate pr in blockchain;

5: set pr.valid to be 0 in DB;

6: else

7 tasklist = check_invalidate(time);

8: for every valid record pr € blockchain do

9: if (pr.time < time and pr.task € tasklist) then

10: invalidate pr in blockchain;

11: set pr.valid to be 0 in DB;

12: else

13: if prtime < time and there exists pri €
blockchain such that pri.task = pr.task and pri.time >
time then

14: print “Inconsistency between database and

blockchain”; return error;

15:

16: procedure check_invalidate(time)

17: tasklist = (;

18: for every pr in DB such that pr.time > time and pr €
blockchain do

19: if pr.task ¢ tasklist then tasklist = tasklistU{pr.task};

20: return tasklist;

Restoring the provenance database: If any of the algo-
rithms reports an error, or if there are signs that the provenance
database has been compromised, then the provenance database
needs to be restored from the blockchain. The provenance
database is restored as follows. For every provenance record
in the blockchain, we check whether the record is wvalid.
We then add the record and the validation status to the
provenance database. The above approach requires to traverse
the blockchain only once.

VII. IMPLEMENTATION OF SCIBLOCK

A number of blockchain platforms were developed in-
cluding Ethereum [23], Tierion [45], Hyperledger [25],
Bigchain [12], and MultiChain [35], etc. We chose to imple-
ment SciBlock on top of the Ethereum Parity [2] blockchain,
because Parity is a permissioned blockchain with POA con-
sensus that provides both authentication and tamper proof, and
Parity has better performance than Ethereum Geth.

Adding provenance records/invalidation transactions to
blockchain: The format of the provenance records is specified
using smart contracts in Ethereum and the provenance record
is created using the buildTransaction API. The provenance
records are submitted to private blockchains via a python
web RPC interface called web3.py. When a user submits
a provenance record, web3.py invokes the sendTransaction()
RPC call to add the record to the blockchain. The information
related to the provenance record is then anchored to the
Merkle tree and a transaction receipt is returned to the user.
Invalidation transactions are authenticated and added to the
blockchain similarly.

Querying provenance records by fields: We implemented
two primitives for querying the provenance records by fields.
(1) a naive primitive that uses brute-force search to locate
a specific provenance record and (2) a primitive based on
the Bloom filter [1], which is a probabilistic data structure
developed to improve the efficiency of search. In the Bloom
filter-based implementation, when a user submits a provenance
record, the event/log mechanism in Ethereum captures and
anchors the data as logs in the blockchain. The logs are
stored in the logsBloom data structure in the block header
of the Bloom filter, which consists of indexable information
that utilizes storage efficiently. Ethereum Bloom filter has
the following limitations. First, the index field can contain
maximum of 32 bytes. However, each field of a provenance
record is a string that can have arbitrary length. To counter
this limitation, we converted the field that needs to be indexed
into type Bytes32 that represents 32-byte strings. Secondly,
up to three fields can be indexed in the Bloom filter. Thirdly,
the Bloom filter produces false positives and hence the result
returned from the Bloom filter needs to be verified.

Presence of a provenance record in the blockchain: Authen-
tication is not required to verify the existence of a provenance
record in the blockchain. External users can submit query
requests through web interface. SciBlock uses the getTransac-
tionReceipt() RPC call to check whether a provenance record
exists in the blockchain, which takes as input the hash of a
provenance record and returns the corresponding receipt if the
record exists in the blockchain.

Provenance invalidation: When an invalidation transaction
is added to a blockchain, Sciblock computes all provenance
records that are not previously invalidated and are invalidated
by this transaction. Sciblock then stores the hash of each
invalidated provenance record as a new transaction in the
blockchain and indexes the hash field. This enables users
to check if a provenance record is valid efficiently using
the Bloom filter. Alternatively, instead of storing the hash
of each invalidated provenance record, we can just store the
invalidation transaction in the blockchain. When a user queries
whether a provenance record is valid, we check whether the
record is invalidated by any of the invalidation transactions
in the blockchain. Compared to the approach used in our
implementation, this approach has less invalidation time, but
imposes higher performance overhead on checking whether a
provenance record is valid.

Provenance database: SciBlock uses SQLite [5] and
MySQL [3], two widely used database management systems,
as our provenance databases. SQLite is an embedded database
management system that has superior performance for single
machine access, but is not intended to be used as client-server
applications. As a result, SQLite is installed on each local
machine and all copies of a SQLite database on different ma-
chines are synchronized through the network. MySQL is much
slower than SQLite for single machine access, but is good
for concurrent access by a large number of users/machines
through the network.

To synchronize the SQLite databases on different ma-
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chines, a separate client program executes on each node
connects and synchronizes with its locally cached blockchain
using the web3 interface. When a new provenance record
is added to the blockchain, the client obtains the corre-
sponding block number using web3.eth.blockNumber() and
compares it against the last synchronized block number.
The client then uses web3.eth.getTransactionFromBlock() and
web3.eth.getTransactionReceipt() to get the corresponding
transaction receipt. The provenance logs are stored in the trans-
action receipt in an hex encoded format. The client program
then decodes the logs to obtain the provenance record and
adds the record to the provenance database. The above process
synchronizes SQLite databases and the blockchain within a
time frame of approximately 70ms for each provenance record.

VIII. EVALUATION

We evaluate the performance of SciBlock using a real
workflow provenance generated by the DATAVIEW workflow
management system [30] and synthetic benchmarks generated
by a workflow provenance generator written by us. All ex-
perimental results were obtained on dual two-core 3.30 GHz
Intel Xeon machines with 8G B memory connected through a
Gigabit Ethernet switch with 1 Gbps full-duplex ports.

A. Experimental Results: Single Machine

In Ethereum, users can create multiple peers on a single
machine. Each peer takes users’ input and performs the func-
tionality defined in the smart contracts. This section presents
the performance results of SciBlock on a single machine
with 1-3 peers. We installed Ethereum parity, SQLite, and
MySQL on each of the machines used in our experiments.
The blockchain is not synchronized among different machines
in our single-machine experiments. We have also installed
MySQL on an external machine in the same local-area network
to enable remote access to MySQL through the network.

Average time taken to add one transaction: Figure 6(a)
gives the average time taken for adding one provenance record
to the blockchain and databases from 1-3 peers on a single
machine. The number of provenance records added varies
between 2000 and 10000. Each node added total_record/x
provenance records to the blockchain/databases simultane-
ously, where total_record is the total number of records added
(2000—10000) and z is the number of peers (1—3). The figure
shows that the time taken for adding one provenance record to
the blockchain increases when the number of peers increases.
In addition, with the same number of peers, the time taken

for adding one provenance record is constant, irrespective to
the size of the blockchain. Adding one provenance record to
databases is 1000 — 10000 times faster than adding one record
to the blockchain (as shown in Figure 6(b)).

Average query time: Figure 7 gives the average time
taken for querying one provenance record by the output
field from a single peer on a single machine. The x-axis
in the figure represents the size of the blockchain/databases
(2000 — 10000 provenance records) and the y-axis represents
the average query time, which was calculated as an aver-
age over ten randomly generated outputs. MySQL(L) and
MySQL(G) in the figure represent querying MySQL on the
local and remote machines, respectively. blockchain-Naive and
blockchain-Bloom represent our brute-force query primitive
and Bloom-filter based query primitive, respectively. Figure 7
shows that blockchain-Bloom is 10.7% faster than blockchain-
Naive, and querying SQLite and MySQL databases is signifi-
cantly faster than querying the blockchain in all experiments.

We have also measured the average time taken to query
one provenance record from 2-3 peers on a single machine
simultaneously. Our experimental results show that the average
query time with 2 and 3 peers is 10 — 14% higher than that
with a single peer for both blockchain and databases.

Average blockchain verification time: The average time
taken to check whether a provenance record is present in a
blockchain is constant (3ms) for blockchains with 2000-10000
provenance records. This result and Figure 7 together show
that, querying SQLite (MySQL) combined with blockchain
verification is about 7 times and 3 — 3.5 times faster than
querying the blockchain directly.

Computing Derivation History: Figure 8 gives the time
taken to compute the derivation graphs that contain a sequence
of 2000-10000 nodes, from a single peer on a single ma-
chine. SQLite/MySQL+verify represents our implementation
of Algorithm 1, which uses database query combined with
blockchain verification to compute derivation graphs. The
figure shows that the time taken to compute a derivation
graphs increases when the graph size increases for both
blockchain and databases. The figure also shows that SQLite
performs best, followed by SQLite+verify. Blockchain-Bloom
has the worst performance, which is 5.3 times worse than
SQLite+verify and 1.9 times worse than MySQL+verify.

Figure 9 gives the time taken to compute the derivation
graph for provenance records containing two inputs. The in-
puts to each record are randomly chosen from the outputs that
have already been generated. Figure 10 gives the number of
nodes and edges in the graphs computed. Similar to Figure 8,
SQLite performs best and Blockchain-Bloom performs worst.

We have also collected provenance records produced from
a diagnosis recommendation workflow [6] in DATAVIEW and
computed the derivation graph for the output of the workflow.
The derivation graph consists of 8 nodes and 9 transitions.
The time spent in computing derivation graph is 1lms for
SQLite+verification, 0.39 seconds for MySQL+verification,
and 0.51 seconds for Blockchain-Bloom.

In addition, we have measured the time taken to compute
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the derivation graph simultaneously from 2 and 3 peers. The
experiments conducted are the same as those conducted for
a single peer. Our experimental results show that the average
time taken to compute the derivation graph is about the same
for different number of peers.

Invalidation time: We have measured the average time
taken to invalidate 2000-10000 provenance records in the
blockchain. The time is constant (1 second), irrespective to
the blockchain size. This is because every time a provenance
record is invalidated, the hash of the record is added to the
blockchain, which takes about 1 second. Adding hashes of
invalidated records enables users to query whether a record is
valid efficiently. Our experimental results show that, it takes
about 16ms (18ms) to check whether a record is valid, when
all records in the blockchain are valid (invalid). The average
time taken to invalidate one provenance record from multiple
peers is the same as that taken to add one record to the
blockchain from multiple peers (shown in Figure 6).

Memory overhead: Figure 11 gives the memory usage for
computing derivation graphs whose sizes vary between 2000 to
10000. The memory usage was captured using the TOP Linux
utility. Compared to blockchain, SQLite with verification and
MySQL with verification imposes 0.9% — 8% and 7% — 18%
overhead on memory usage, respectively.

B. Experimental Results: Multiple Machines

In Ethereum, blockchains are distributed across peer-to-peer
networks. In order to add transactions to the same blockchain
from different machines, we need to synchronize peers on
different machines. Each peer in Ethereum network is uniquely
identified with a URL scheme called an “enode”. Each enode
consists of a hexadecimal node ID encoded with a username,
an IP address, and a TCP listening port number. We maintain a
list of peers participating in the network and the peer discovery
protocol is used to connect peers in the network based on
the list. Once the peers on different machines get connected,
the peers start to synchronize with each other so that each
machine has its own copy of the same blockchain. When a
peer adds a provenance record to a blockchain, the record is
also added to all other synchronized copies. Therefore, when a
peer issues a query to the blockchain, the query is performed
on its local copy of the blockchain and hence the query time is
the same as that of a single machine. Similarly, the time spent
in computing the derivation history and checking whether a

provenance record is valid is the same as that of a single
machine. As a result, this section reports only the time taken
to add transactions from multiple machines.

Figure 12 gives the average time taken to add one prove-
nance record to the same blockchain simultaneously from 1-3
machines (one peer runs on each machine). The figure shows
that the average time increases from 1ms to 9ms, when the
number of machines increases from 1 to 3. The average time
for adding one record from two (three) machines is 1.67x
(2.25x) slower than adding one record from two (three) peers
on a single machine, due to the synchronization between
blockchain copies stored on multiple machines.

IX. CONCLUSION

This paper presents SciBlock, a system that leverages recent
advances in the blockchain technology to provide a tamper-
proof and non-repudiable storage for scientific workflow
provenance data in a distributed collaborative environment.
SciBlock enables scientists to verify the trustworthiness of
scientific data and reproduce scientific results. SciBlock
also offers the capability of invalidating wrong or outdated
scientific workflow provenance data without removing
them from the blockchain. We have conducted extensive
experiments to evaluate the performance and the scalability
of SciBlock. Our experimental results show that SciBlock
offers a promising approach to enhancing scientific research
integrity in a distributed collaborative environment.
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