
CFGExplainer: Explaining Graph Neural
Network-Based Malware Classification from

Control Flow Graphs
Jerome Dinal Herath, Priti Prabhakar Wakodikar, Ping Yang, Guanhua Yan

State University of New York at Binghamton, Binghamton, NY, USA

Abstract—With the ever increasing threat of malware, exten-
sive research effort has been put on applying Deep Learning for
malware classification tasks. Graph Neural Networks (GNNs)
that process malware as Control Flow Graphs (CFGs) have
shown great promise for malware classification. However, these
models are viewed as black-boxes, which makes it hard to validate
and identify malicious patterns. To that end, we propose CFG-
Explainer, a deep learning based model for interpreting GNN-
oriented malware classification results. CFGExplainer identifies
a subgraph of the malware CFG that contributes most towards
classification and provides insight into importance of the nodes
(i.e., basic blocks) within it. To the best of our knowledge,
CFGExplainer is the first work that explains GNN-based mal-
ware classification. We compared CFGExplainer against three
explainers, namely GNNExplainer, SubgraphX and PGExplainer,
and showed that CFGExplainer is able to identify top equisized
subgraphs with higher classification accuracy than the other three
models.

I. INTRODUCTION

Malicious software (or malware) is any software that per-
forms harmful actions on computer systems. Malware can
be in the form of viruses, worms, trojan horses, and so on.
According to the report by AV-TEST [1], there are over
1228 million malware in the world as of 2021 [1], which is
roughly 12 times more than in the year of 2012. To cope
with this rapidly evolving and increasing malware threat,
extensive research efforts have been put on automating mal-
ware detection and classification tasks. Among these research
efforts, Machine Learning (ML), in particular Deep Learning
(DL), is a promising approach for identifying and classifying
malware [2], [3], [4], [5], [6]. There are a variety of DL-based
solutions, including models inspired by success in computer
vision [7], [8], sequence models [9], [10], and more recently
graph based models [11], [12], [13], [14] that process malware
as Control Flow Graphs (CFGs).

Graph Neural Network (GNN) based solutions [11], [12],
[15] have shown great promise in malware classification due
to their ability to not only process block level features but
also handle topological relationships across nodes (i.e., basic
blocks) in graphs. However, like many Deep Neural Network
models, GNN-based CFG classifiers are treated as black boxes
as they do not provide insight into reasons behind malware
classification, which makes it hard for malware analysts to
verify classification results and identify malicious patterns.
This leads to the growing need for solutions that explain the
classification results made by the GNN models.

Recently, there have been efforts in explaining GNN-based
classification results [16], [17], [18] by identifying graph
structures that contribute most towards classification. These
models provide explanations in forms of a subgraph pruned
out of the original graph that leads to high classification
accuracy. However, these approaches do not provide insight
into the contribution of each node in the subgraph (i.e., basic
blocks in CFG) towards classification and hence malware
analysts may need to analyze all nodes in it to identify
malicious behaviors. When the size of the subgraph is large,
this could be an exhaustive task. While there has been a recent
effort in developing an interpretability solution for malware
classification [19], it is not applicable in explaining GNN-
based malware classification based on graph structure. To the
best of our knowledge, there is no previous work specifically
focused on explaining GNN-based malware classification.

Against this backdrop, we develop CFGExplainer, a deep
learning based graph explainer for interpreting malware clas-
sification results. CFGExplainer identifies a subgraph of a
malware CFG that contributes most towards malware classifi-
cation and provides insight into the importance of the nodes
(i.e., basic blocks) within the subgraph. CFGExplainer helps
malware analysts zoom in on the most important blocks of
code and view any topological relationships in the graph at the
same time. It would also alleviate the complexity of identifying
malicious patterns when used in tandem with tools such as
IDA-Pro [20] and Ghidra [21].

To circumvent the issue of searching through a large number
of subgraph combinations, CFGExplainer initially finds node
importance with respect to its perceived contribution towards
malware classification and then uses it to prune and identify
an important subgraph. Taking inspirations from the atten-
tion mechanisms, our proposed method defines a supervised
learning task that uses two inter-connected feed-forwarding
deep neural networks. The first one learns scores for node
embeddings produced from the target GNN, whose internal
structure is treated as a blackbox. The second component
weights the original node embeddings with these scores and
uses them to train a surrogate malware classification model. As
these two inter-connected neural networks are jointly trained
with a negative log-likelihood loss function, the scores learned
from the first model can boost the contribution of important
node embeddings to malware classification in the second one.
Unlike other attention mechanisms where interpretability of

1

attention weights may be ambiguous [22], the node scores
generated in our method directly capture the importance of
node embeddings to the classification task.

We have compared CFGExplainer against three state-of-
the-art GNN-oriented explainers, namely GNNExplainer [16],
SubgraphX [18] and PGExplainer [17], using eleven malware
families (Bagle, Bifrose, Hupigon, Ldpinch, Lmir, Rbot, Sd-
bot, Swizzor, Vundo, Zbot and Zlob) and one benign family.
Our experimental results show that CFGExplainer is able to
identify top subgraphs of the same size that lead to higher
classification accuracy than GNNExplainer, SubgraphX and
PGExplainer. For example, the subgraph constructed from the
top 20% nodes identified by CFGExplainer leads to around
70% classification accuracy on average, which is 4.2 times
higher than GNNExplainer, 3.6 times higher than SubgraphX,
and 2 times higher than PGExplainer.

In a nutshell, our contributions are summarized as follows:
• We propose CFGExplainer, a deep learning based model-

agnostic explainer, for explaining CFG-based malware
classification. CFGExplainer produces a subgraph that
contributes most towards the classification task and pro-
vides the insight into nodes in the subgraph that are
deemed useful for malware classification. To the best
of our knowledge, CFGExplainer is the first work that
explains GNN-based malware classification.

• We have compared the classification accuracy of sub-
graphs produced by CFGExplainer against three state
of the art graph explainers GNNExplainer, SubgraphX
and PGExplainer. Our experimental results show that
CFGExplainer is able to identify top equisized subgraphs
with higher classification accuracy than the other three
models.

• We have analyzed subgraphs containing top 20% of
nodes of malware samples produced by CFGExplainer
and offered insights into malware patterns that would be
useful for further human examination.

The rest of the paper is organized as follows. Section II
provides a brief overview of Attributed Control Flow Graphs,
Graph Neural Networks, and the interpretability models used
in our evaluation. Section III provides the problem formu-
lation. Section IV presents the architecture and algorithmic
details of CFGExplainer. Our experimental results are given in
Section V. Section VI gives the related work and Section VII
draws the concluding remarks.

II. BACKGROUND

In this section, we provide a brief overview of Attributed
Control Flow Graphs (ACFGs) used for malware classifi-
cation, Graph Neural Networks (GNNs), and three graph
based interpretability models used in our evaluations, namely
GNNExplainer [16], SubgraphX [18] and PGExplainer [17].

A. Attributed Control Flow Graphs

An Attributed Control Flow Graph (ACFG) is a Control
Flow Graph (CFG) [23] associated with node attributes. In an
ACFG [11], a vertex or node represents a basic block that

contains a sequence of assembly instructions. A directed edge
between two nodes (u, v) in the ACFG represents that either
the last instruction in node u falls through to the very first
instruction in node v, or there is a jump or call instruction in
u that leads to instructions in node v.

We follow the method in [11] to obtain node attributes for
ACFGs due to its prior success in achieving high classification
results. As shown in Table I, we consider 12 node features
generated from the code sequence in the block and the node
structure. These features are generated based on the number
of assembly instructions categorized into different types (e.g.,
#numeric constants, #mov instructions) as well as the degree
and the number of total instructions in a vertex. Let G =
(V,E) be an ACFG where V is the set of nodes and E =
V × V the set of edges. The graph can be described as a
weighted adjacency matrix A ∈ {0, 1, 2}N×N , where N is the
maximum number of nodes in the graph. If the code naturally
flows from block i to j or if it is a jump instruction, then
Aij = 1. If it is a call instruction Aij = 2, otherwise Aij = 0.
Nodes in V are associated with d-dimensional features X (d =
12 in our work), denoted by X ∈ RN×d where R represents
a set of real numbers.

TABLE I
BLOCK LEVEL FEATURE DESCRIPTION.

Feature Type Feature Description

Generated from
code sequence

Numeric constants
String constants
Transfer instructions
Call instructions
Arithmetic instructions
Compare instructions
Mov instructions
Termination instructions
Data declaration instructions
Total instructions

Generated from
node structure

Offspring (The degree)
Instructions in the vertex

B. Graph Neural Networks
A graph neural network (GNN) model typically operates

in two steps. First, the GNN model processes the graph
and generates node embeddings, which are low-dimensional
vector representations of nodes generated by considering both
the graph structure and node/edge features. Next, the GNN
model processes embeddings for the node/graph classification
task. A GNN model Φ can be divided into two sub-models
{Φe,Φc}. Φe produces f -dimensional node embeddings (de-
noted by Z ∈ RN×f

≥0) based on the adjacency matrix A
and node features X . Φe can be constructed using Recurrent
Neural Networks (RNNs) (e.g., [24]) or by combining Graph
Convolutional Network (GCN) layers with additional pooling
layers (e.g., [11], [12], [13]) Φc is typically a feed forwarding
neural network that acts as a classifier which processes node
embeddings Z.

C. Interpretability Models for Graph Neural Networks
In this paper, we compare the performance of CFGExplainer

against that of GNNExplainer [16], SubgraphX [18] and

2

PGExplainer [17], three state-of-the-art interpretability models
that operate on graph neural networks. These explainers are
post-hoc models that aim to provide explanations on the clas-
sification result produced by a pre-trained graph classification
model. The explanation takes the form of a subgraph of the
original graph. These models provide explanations for each
graph individually.

GNNExplainer provides interpretations in the form of a
subgraph that is pruned out of the original graph. To do
so, GNNExplainer learns a mask which takes the form of a
[N,N] matrix for a graph with N nodes that can be element-
wise multiplied with the adjacency matrix of the original
graph. The resulting matrix can be used as scores to order
the edges in the graph. For every graph to be interpreted,
edges with smallest scores are removed. GNNExplainer learns
to generate these masks as an optimization task. The masks
are optimized by maximizing the mutual information between
the classification of the original graph and the classification
of the newly obtained subgraph (i.e., the subgraph generated
after applying the mask). The pre-trained graph classifier is
probed iteratively to identify the masks. Unlike CFGExplainer,
GNNExplainer needs to optimize the masks for each input
graph individually and hence does not leverage any global
information that may be present across all the graphs.

SubgraphX uses Monte Carlo Tree Search (MCTS) [25]
to explore different subgraph combinations and identify a
subgraph that contributes most towards classification. The
nodes in the tree correspond to subgraphs pruned out of the
original graph. A child in the tree is obtained by performing
node-pruning on the subgraph associated with the parent in the
search tree. The reward for MCTS is generated using Shapley
values [26], [27], which is a game theoretic approach for fairly
assigning gains to different game players. For this explanation
task, the pre-trained GNN predictions are used as the game
gain and different graph structures are considered as players. A
subgraph structure with a higher Shapley value score indicates
higher importance towards classification. Similar to GNNEx-
plainer, SubgraphX is a local explainability model where it
needs to employ MCTS for each ACFG individually.

PGExplainer provides interpretations in the form of a sub-
graph. PGExplainer learns an approximated discrete mask for
edges that explain the graph classification. It trains a mask
predictor, which is a generative deep neural network [28], to
generate edge masks. Unlike GNNExplainer and SubgraphX,
PGExplainer leverages a global view of the graphs. During
its training phase, it obtains the embeddings for each edge
by concatenating the embeddings of the two nodes that form
the edge. The mask predictor then uses the edge embeddings
to predict the probability of each edge being useful for the
classification task. Afterwards, new graphs are sampled based
on the result of the mask predictor and are trained to maximize
the mutual information between original classifications and
classifications made for sampled graphs. Again, the classifica-
tions are made with respect to a pre-trained graph classifier.
During the subgraph identification, the output from the deep
learning model is used as a score to prune graphs.

III. PROBLEM FORMULATION

The main objective of our work is to provide useful interpre-
tations as to why an ACFG is classified as a specific malware
family by the GNN model. Our interpretation separates an
ACFG G into two subgraphs Gs and ∆G (i.e., G = Gs+∆G)
similar to works in [16], [17], where Gs is the subgraph that
makes important contribution towards malware classification
and ∆G the subgraph containing the rest of the nodes. Given
this setting, we break down the interpretability problem into
two sub-problems.

Sub-problem 1: Identifying the subgraph Gs that makes
important contribution towards the malware classification.
Identifying Gs would enable malware analysts to understand
the topological relationship between nodes (i.e., blocks of
code). We quantify the usefulness of these interpretations
by evaluating the classification accuracy of the identified
subgraph using a pre-trained GNN classification model. If
the identified subgraph makes important contribution towards
malware classification, then the difference between the clas-
sification accuracy of the identified subgraph and the original
graph should be small.

Sub-problem 2: Identifying nodes that contain malware
behaviors by ordering the nodes based on their importance on
the classification task. This would enable malware analysts to
study the most important nodes to identify malware behaviors.

IV. DESIGN OF CFGEXPLAINER

Figure 1 gives the operational pipeline of CFGExplainer.
CFGExplainer is designed as a post-hoc model for interpreting
malware classification results. First, a GNN-based malware
classifier is used to obtain the classification result and node
embeddings based on the malware ACFGs. CFGExplainer then
processes the embeddings and class labels to interpret the
results.

For each ACFG to be interpreted, CFGExplainer produces
two outputs: (1) a set of nodes in the ACFG ordered based
on their importance with respect to classification, and (2) a
set of subgraphs constructed based on the node orderings and
a user defined step size. The step size enables an analyst
to control the size of the subgraph he/she wishes to analyze
for malware behaviour. For example, if the step size is 10%,
then the subgraphs contain 10%, 20%, . . ., 100% nodes, and
the smallest subgraph is constructed from the 10% nodes
that contribute most towards malware classification. The step
size needs to be carefully chosen, as using a large step size
would result in large subgraphs while using a small one
would increase the time in finding subgraphs. By analyzing
the output of CFGExplainer, malware analysts would be able
to identify the most important code blocks (i.e., the nodes)
and topological connections, and their growth as the graph
increases in size. Like other explainers considered in this
work [16], [17], [18], CFGExplainer explains the prediction by
a particular classifier on a particular sample. Different GNN
classifiers may assign importance scores to different nodes for
the same prediction result, and hence the subgraphs generated
may be different. In addition, the subgraphs generated may be

3

Fig. 1. The operational pipeline of CFGExplainer.

disjoint depending on what edges are considered important by
the corresponding explainer.

One main challenge in obtaining a useful subgraph is the
large number of subgraph combinations. For a graph with
|E| edges, the total number of subgraph combinations is
exponentially large (i.e., 2|E|). Searching through all these
combinations can be a daunting task. CFGExplainer tackles
this issue by breaking down the process into two main stages:
an initial learning stage and an interpretation stage.

In the initial learning stage, CFGExplainer trains a deep
learning model that learns to generate node scores based on
node embeddings. A large score on a node entails that the node
is important for malware classification. As shown in Figure 1,
the input to the initial learning stage is the node embeddings
generated from the GNN. For a GNN with reasonable classi-
fication capability, the node embeddings can be considered as
a latent representation of the nodes that are useful for clas-
sification. By directly using node embeddings, CFGExplainer
need not re-learn any information in the graphs from scratch.
This enables the use of simple model architectures such as
feed-forwarding neural networks to construct CFGExplainer
as opposed to more complex model variants. Using node
embedding also ensures that CFGExplainer is model agnostic,
and hence does not need any internal parameters of the clas-
sification model for its learning task. Additionally, using node
embeddings reduces the space complexity of computation. For
a graph with N nodes and for embedding size f , then the input
would be a matrix of size [N, f] at all times. This is in contrast
to PGExplainer [17] that uses edge embeddings, where the
deep learning model could require a constructed input of size
[N2, 2f]. In addition, the deep learning model is trained using
node embeddings of a set of different malware families, which
enables the model to better discriminate between different
malware families while at the same time learning similarities
within the same malware family. This provides CFGExplainer
the ability to better generalize when producing interpretations
later on. This is in contrast to a purely local search method like
GNNExplainer [16] or SubgraphX [18], where interpretations
for each graph must be generated without leveraging any
global knowledge.

Once CFGExplainer sufficiently learns to generate node

scores, in the interpretation stage, the deep learning model is
probed iteratively based on a user defined step size to obtain
the node ordering and the subgraphs. The trained model is
used as a surrogate model to directly determine what nodes
to prune at each step, thereby circumventing the exploration
problem stemming from the large number of possible subgraph
combinations. Below, we provide detailed algorithms for the
learning and interpretation stages.

A. The Initial Learning Stage

In the initial training stage, a deep learning model (denoted
by Θ) is trained to rank nodes in ACFGs based on their
importance towards the classification task. The inputs to Θ are
node embeddings and ACFG class labels (i.e., Bagel, Bifrose,
etc.) generated by a GNN classifier Φ = {Φe,Φc}, where Φe

represents the node embedding generation component and Φc

represents the classification component. As shown in Figure
1, Θ consists of two feed forwarding neural networks: Θs

and Θc. Here, Θs is the node scoring component that obtains
node embeddings Z produced by Φe and generates a score
for each node Ψ ∈ [0, 1]1×N . A large score on a node
(i.e., Ψi ≈ 1) indicates that the node is important for the
classification task and a low score indicates otherwise. After
generating Ψ, the original node embeddings are multiplied by
the individual scores in Ψ to obtain weighted node embeddings
Zweighted. These weighted node embeddings are subsequently
processed by the second component Θc to generate a vector of
classification probabilities Y across all ACFG families, where
Y [C] is the classification probability associated with the class
label C as identified by the GNN model Φ. Although having
the score as a separate input to Θc may provide freedom to
find a better classification model, it does not help learn the
weights of node embeddings. In our model, weights are tied
to embeddings, which helps to identify important nodes.

The objective of the initial learning stage is to identify
important nodes with respect to malware classification. How-
ever, it is challenging to generate a labeled dataset for node
importance as it requires manual analysis of all nodes. A
connected model Θ = {Θs,Θc} with negative log-likelihood
loss (i.e., loss = − 1

m

∑
∀i=1:m log(Y [Ci]) for m ACFGs)

circumvents the need to obtain labeled data with node impor-

4

tance for all the ACFGs. Due to the architectural connectivity
between Θc and Θs, minimizing this loss through an optimizer
such as Adam [29] leads to a joint training procedure, where
back propagation updates weights in both neural networks.
Note that log(Y [Ci]) would induce an undefined result if
Y [Ci] == 0. To avoid this, we use a small positive bias
when computing the log value (i.e., log(Y [Ci] + 10−20))
in our implementation. When Θc learns to better predict
the ACFG class based on Zweighted, it also results in Θs

learning to predict higher scores for node embeddings that
have higher contribution towards classification. Here, we train
a new classifier Θc instead of Φc, because otherwise, training
of CFGExplainer would change the internal weights of the
GNN, subsequently changing the embeddings Z. For a given
ACFG, the embeddings Z generated by the GNN needs to
be fixed, so that any score learnt by Θs does in fact reflect
node importance. Although theoretically the node scores Ψ
could be the same when node embeddings are the same, it is
highly unlikely to happen in practice due to the complex graph
structures of ACFGs. Algorithm 1 gives the detailed steps of
the initial learning stage.

TABLE II
SYMBOL TABLE.

Symbol Explanation
G The ACFG G = (V,E) where V is a set of nodes

and E = V × V a set of edges
N The maximum number of nodes in the ACFG
A The weighted adjacency matrix A ∈ {0, 1, 2}N×N

X The feature matrix X ∈ RN×d

d The number of features per node
C The class label of the ACFG
Φ The pre-trained GNN classification model

Φ = {Φe,Φc}
Φe The node embedding generation component of Φ
Φc The classification component of Φ

Z Node embeddings generated by Φe (Z ∈ RN×f
≥0)

f The size of the embeddings per node
Θ The DL model of CFGExplainer (Θ = {Θs,Θc})
Θs The node scoring component of CFGExplainer
Θc The classification component of CFGExplainer
Ψ The node scores generated by Θs

Y The classification probabilities predicted by Θc

M The #training samples used by CFGExplainer
m The mini-batch size used in training CFGExplainer

In Algorithm 1, CFGExplainer takes as
input M ACFG samples, denoted by D =
{{A1, X1}, {A2, X2}, ..., {AM , XM}}. Each sample
{Ai, Xi} is constructed from the adjacency matrix Ai

associated with graph Gi and the feature matrix Xi. In
Line 1, the algorithm randomly initializes the weights of
Θs and Θc. For each training epoch ≤ num epoch, the
neural network components Θs and Θc are jointly trained
as follows. First, a mini-batch D′ of m < M training
samples are randomly selected from D and the initial training
loss is set as 0 (lines 3-4). In line 6, node embeddings of
all the nodes (denoted by Zi) are obtained from the node
embedding generation component Φe of the GNN model,

using the adjacency matrix Ai and the feature matrix Xi.
The classification component Φc then processes the node
embeddings Zi to predict the class label Ci (line 7).

Next, the node scoring component Θs computes scores Ψ
for each node (line 8). Each of the original embeddings are
weighted according to Ψ to obtain Zweighted (lines 9-11).
Zweighted is then used by the classification component Θc

to generate class probabilities Y for the malware (line 12).
The negative log-likelihood loss value is computed in lines 13
and 14 for malware class Ci predicted by the GNN model.
The weights of both Θs and Θc are then updated using the
Adam optimizer (line 15). Once the training is complete, Θs is
used as a surrogate to identify subgraphs that contribute most
towards the malware classification.

Procedure Training
1 Randomly initialize the weights of DNN models

Θs and Θc

2 for epoch = 1; epoch ≤ num epoch, epoch++ do
3 Randomly pick a subset of training samples

D′ ⊂ D
4 loss = 0
5 for each training sample {Ai, Xi} ∈ D′ do
6 Zi = Φe(Ai, Xi)
7 Ci = Φc(Zi)
8 Ψ = Θs(Zi)
9 Zweighted = zeros[N, f]

10 for j = 1; j ≤ N , j++ do
11 Zweighted[j, :] = Ψj × Zi[j, :]

end
12 Y = Θc(Zweighted)
13 loss += log(Y [Ci])

end
14 loss = −loss

m
15 Adjust weights in Θ based on the loss

computed
end

16 return Θ = {Θs,Θc}
Algorithm 1: The initial learning stage.

B. The Interpretation Stage

As shown in Algorithm 2, CFGExplainer needs the trained
instances of the node scoring component Θs and the GNN
based node embedding generation component Φe to generate
interpretability results. The algorithm also takes the following
parameters: the number of real nodes in the ACFG Nreal ≤ N
disregarding the padded nodes, the step size (step size ≤
100 and 100%step size == 0) specifying the percentage of
the graph to prune at each iteration, and the set of all nodes V
associated with the ACFG to be interpreted. The output of this
algorithm is Vordered, which is a set of nodes ordered based
on their importance on the classification task. Additionally,
Algorithm 2 produces the adjacency matrices of subgraphs,
each of which contains top Nreal∗step size% most important
nodes.

5

First, the algorithm initializes Vordered and subgraphs as
empty sets (line 1). Then it assigns a set of all node indices of
the graph to variable all node indices (line 2), which stores
the indices of nodes that have not yet been pruned. Next, the
algorithm computes Nstep, which stores the number of nodes
to be pruned off from the graph at each step based on the user
defined step size (line 3). The algorithm then loops through
graph size with step size starting from the original graph
(i.e., graph size = 100) down to the smallest graph (i.e.,
graph size = step size) and prunes the graph in lines 4-18.

During each pruning iteration, the adjacency matrix of the
current subgraph A is appended to the final result subgraphs
(line 5). Then the node embeddings are generated by calling
Φe(A,X) (line 6) followed by obtaining the scores Ψ (line 7).
In lines 8-18, the algorithm prunes off Nstep least important
nodes that have the lowest scores in Ψ. For each node to
be removed within the loop at lines 8-18, the algorithm first
identifies the node with the lowest score (i.e., min score)
and the corresponding node index (i.e., min index) among
nodes in all node indices (lines 9-14). Afterwards, the set
all node indices is updated by removing min index and
appending the corresponding node to Vordered (lines 15-
16). Next, the graph adjacency matrix is masked by zeroing
out all the outgoing edges from the node associated with
min index (i.e., A[min index, :] = [0, 0, ..., 0]) (line 17).
Afterwards, all incoming edges to the node with min index
(i.e., A[:,min index]) are zeroed out in a similar fashion (line
18). This process leads to an adjacency matrix where node
vmin index is removed. In line 19, the set Vordered is reversed
such that the first node is the node that is most important for
the classification task while the last node is the least important
node. Finally, the adjacency matrices are reversed in order
such that the first adjacency matrix corresponds to the smallest
subgraph with top step size% most important nodes, whereas
the last adjacency matrix corresponds to the original graph
(line 20).

V. EVALUATION

This section presents the experimental results of CFGEx-
plainer. We first present the dataset and the model archi-
tecture, and then compare the performance of CFGExplainer
against three graph-based interpretability models, namely GN-
NExplainer, SubgraphX and PGExplainer. All deep learning
models presented in this section were trained and tuned on
a 2.3-3.7 GHz Intel Xeon Gold 6140 machine with NVIDIA
Tesla P100 12GB GPU. The source code of CFGExplainer and
the top 10% and 20% of subgraphs generated from malware
samples are available in Github1.

A. Dataset and Model Architecture

Below, we provide details about the dataset and the model
architecture of CFGExplainer and the GNN classifier used in
our evaluations.

1https://github.com/dherath/CFGExplainer

Procedure Interpret
1 Vordered = ∅, subgraphs = ∅
2 all node indices = {1, 2, . . . , Nreal}
3 Nstep = step size

100 ×Nreal

4 for graph size = 100; graph size ≥ step size,
graph size −= step size do

5 subgraphs.append(A)
6 Z = Φe(A,X)
7 Ψ = Θs(Z)
8 for i = 1; i ≤ Nstep, i++ do
9 min index = 1

10 min score = +∞
11 for j ∈ all node indices do
12 if min score > Ψj then
13 min score = Ψj

14 min index = j
end

15 all node indices.remove(min index)
16 Vordered.append(vmin index)
17 A[min index, :] = [0, 0, ..., 0]
18 A[:,min index] = [0, 0, ..., 0]

end
end

19 Vordered.reverse()
20 subgraphs.reverse()
21 return Vordered, subgraphs
Algorithm 2: The interpretation stage of CFGExplainer.

YANCFG dataset: We consider a graph dataset in [11], which
contains the CFG and the binary executable of 11 distinct
malware families: Bagle, Bifrose, Hupigon, Ldpinch, Lmir,
Rbot, Sdbot, Swizzor, Vundo, Zbot, Zlob, and one Benign
class. Unlike a malware classification task, our objective is
to interpret and understand the classification result, which re-
quires us to analyze the binary executable of malware samples.
This was the only dataset we were able to obtain that had both
the CFGs and the malware executables. According to [11], the
truth labels for the dataset were generated by a majority voting
scheme, based on detection results of five antivirus scanners
returned by VirusTotal online malware analysis service. The
CFGs are converted into their attributed forms presented in
section II. We note that CFGExplainer is able to handle
any other format of node features as long as the inputs to
CFGExplainer are the node embeddings generated by the
GNN. We consider 1056 graphs equally distributed across
all the families mentioned above. The dataset contains graphs
with at most 7352 nodes and at most 13576 edges.

Model Architecture: Below, we provide the model architec-
ture of the ACFG classifier and the deep learning models
used in CFGExplainer. We classify the ACFGs using a Graph
Neural Network (GNN) Φ = {Φe,Φc} constructed as follows.
Φe is constructed by three inter-connected Graph Convolution
Network (GCN) layers with different sizes (1024, 512, 128),
where the size of the final node embedding is 128. Each of the

6

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(a) Bagle

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(b) Bifrose

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(c) Hupigon

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(d) Ldpinch

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(e) Lmir

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(f) Rbot

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(g) Sdbot

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(h) Swizzor

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(i) Vundo

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(j) Zbot

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(k) Zlob

0 20 40 60 80 100
Graph Size (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CFGExplainer
GNNExplainer
SubgraphX
PGExplainer

(l) Benign

Fig. 2. The classification accuracy of subgraphs constructed.

GCN layers is activated by Relu [30] activation function. The
classifier Φc is a densely connected linear layer that produces
class labels across 12 ACFG families. All node embeddings
generated by Φe are considered by Φc for classification. The
intermediate representations in Φe include not only node fea-
tures but also topological relationships among nodes. Having
a large dimension for embeddings allows us to project ACFGs
so that we can classify with high accuracy (i.e., 98% across

all ACFG types). As the GCN-based classifier requires the
input graph to contain a fixed number (i.e., 7352) of nodes,
all ACFGs with fewer than 7352 nodes are padded up to that
value using temporary nodes with zeroed out features with no
edges.

In CFGExplainer, the node scoring component Θs is a feed-
forwarding neural network constructed with three connected
dense layers with sizes 64, 32, and 1, where the sigmoid

7

TABLE III
SUMMARY OF THE CLASSIFICATION RESULTS FOR TOP 10%, 20% SUBGRAPHS AND THE AUC RESULTS IN FIGURE 2.

ACFG
Family

CFGExplainer GNNExplainer SubgraphX PGExplainer
Classification

Accuracy AUC
Classification

Accuracy AUC
Classification

Accuracy AUC
Classification

Accuracy AUC
10%

Graph
20%

Graph
10%

Graph
20%

Graph
10%

Graph
20%

Graph
10%

Graph
20%

Graph
Bagle 0.7531 0.8594 0.8933 0.1333 0.1333 0.4670 0.0334 0.1333 0.4663 0.2958 0.4480 0.6669
Bifrose 0.3781 0.5073 0.7646 0.0876 0.1000 0.3887 0.1000 0.2358 0.4835 0.1083 0.1645 0.4401
Hupigon 0.6000 0.7500 0.8448 0.1333 0.2666 0.3933 0.2666 0.2666 0.4700 0.2166 0.2833 0.4650
Ldpinch 0.4821 0.6357 0.7469 0.1428 0.2500 0.5226 0.1128 0.1250 0.4567 0.1345 0.2613 0.4960
Lmir 0.5000 0.5833 0.7300 0.0000 0.0000 0.4166 0.0000 0.0667 0.4134 0.2000 0.2166 0.4013
Rbot 0.6500 0.7666 0.8316 0.2000 0.2333 0.5650 0.1673 0.2562 0.4997 0.2500 0.3166 0.5200
Sdbot 0.3170 0.4500 0.6645 0.0666 0.1333 0.4866 0.0000 0.1213 0.4087 0.0500 0.2166 0.4425
Swizzor 0.6939 0.9635 0.9107 0.0000 0.0909 0.6334 0.1621 0.3166 0.6769 0.3242 0.5424 0.7360
Vundo 0.5333 0.7416 0.8025 0.1333 0.1333 0.5532 0.6667 0.1666 0.4533 0.1666 0.2500 0.5799
Zbot 0.5500 0.7666 0.8358 0.2000 0.2666 0.5666 0.1333 0.1369 0.4730 0.1666 0.2666 0.4200
Zlob 0.3823 0.7078 0.8005 0.0000 0.0192 0.3208 0.1088 0.1592 0.4228 0.2176 0.2392 0.4812
Benign 0.4583 0.7348 0.7967 0.1667 0.3816 0.5367 0.1583 0.3567 0.5290 0.1500 0.3318 0.5043
Average 0.5239 0.7055 0.8018 0.1053 0.1673 0.4875 0.1591 0.1950 0.4794 0.1900 0.3391 0.5127

activation function is used by the final layer to obtain scores
Ψ ∈ [0, 1]1×N . The classifier of CFGExplainer is a feed-
forwarding neural network constructed with three connected
dense layers with sizes 64, 32, and 16, which is in turn
connected to a final dense layer that produces classification
probabilities with the softmax activation function. When the
surrogate model in CFGExplainer learns to classify malware
using weighted node embeddings, CFGExplainer also learns
to assign higher scores to more important nodes.

B. Quantitative Evaluation

In this section, we evaluate the classification accuracy
of equisized subgraphs produced by four GNN-based in-
terpretability models – CFGExplainer, GNNExplainer [16],
SubgraphX [18] and PGExplainer [17].

Our intuition is that a better interpretability solution should
be able to identify a smaller subgraph that leads to similar
classification accuracy as when the original graph is used.
Similar to CFGExplainer, GNNExplainer, SubgraphX and
PGExplainer learn to identify useful subgraphs by perturbing
the original graphs. The perturbations for the models GNNEx-
plainer and PGExplainer are carried out by first identifying a
mask for edges and then combining it with the original graph.
GNNExplainer directly learns this mask as an optimization
task for each graph separately. PGExplainer uses a generative
deep neural network for this task. SubgraphX searches through
different permutations of the original graph using a Monte-
Carlo tree search [25] method assisted by Shapley value
calculations [26], [27]. The Shapley values are used as a score
to identify important subgraphs. To make a fair comparison,
CFGExplainer uses the same trained GNN classifier used by
the other three models.

Figure 2 compares the classification accuracy of the sub-
graphs produced by three models for eleven malware families
(Figure 2 (a) – (k)) and one benign class (Figure 2(l)). The
subgraphs contain 10% − 100% nodes with a step size 10%.
Table III summarizes the classification accuracy for subgraphs
containing top 10% and 20% important nodes, and the Area

Under the Curve (AUC) for Figures 2(a)-2(l). For the AUC
computation, the graph size (0% − 100%) is normalized
between 0 − 1 so that AUC ∈ [0, 1]. A larger AUC score
entails that the model is able to identify smaller subgraphs
that lead to high classification accuracy. We use this metric
because it encompasses the classification accuracy for all the
subgraphs into one numeric value.

When considering subgraphs containing top 20% important
nodes, CFGExplainer achieves high classification accuracy
(over 70%) for eight malware families: Bagle, Hupigon, Rbot,
Swizzor, Vundo, Zbot, Zlob and Benign. In contrast, the aver-
age classification accuracy of subgraphs containing top 20%
nodes produced by GNNExplainer, SubgraphX and PGEx-
plainer for the same families are around 19%, 29% and 33%,
respectively. For example, for the Bagle family, the subgraphs
constructed using the top 20% nodes produced by CFGEx-
plainer lead to 85% classification accuracy (shown in Figure
2(a)), which is 6.4 times higher than both GNNExplainer
and SubgraphX, and also 1.9 times higher than PGExplainer.
Although the subgraphs containing top 20% nodes produced
by CFGExplainer for families Bifrose, Ldpinch, Lmir, Sdbot
have lower classification accuracy (54% in average), it is
still much higher than GNNExplainer (i.e., 12% in average),
SubgraphX (i.e., 14% in average) and PGExplainer (i.e., 21%
in average).

We see similar variation for subgraphs containing top 10%
important nodes. As shown in Table III, on average the
subgraphs containing top 10% important nodes produced by
CFGExplainer has 52% classification accuracy, which is 4.9,
3.3 and 2.7 times higher than GNNExplainer, SubgraphX and
PGExplainer, respectively. As expected, when the subgraph
size increases, the classification accuracy increases for all three
models. In addition, for all families, the subgraphs produced
by CFGExplainer (except those containing 100% of nodes)
lead to similar or higher classification accuracy than GNNEx-
plainer, SubgraphX and PGExplainer. When considering the
AUC variation, the models GNNExplainer, SubgraphX and
PGExplainer have similar scores on average (0.4875, 0.4794

8

and 0.5127, respectively). The AUC value of CFGExplainer
(0.8018) is 1.6 times higher than both GNNxplainer and
SubgraphX, and also 1.5 times higher than PGExplainer,
indicating that on average CFGExplainer can identify smaller
subgraphs that make important contributions to classification
with respect to the GNN classifier.

CFGExplainer is able to identify equisized subgraphs with
high classification accuracy because of the following reasons.
First, in the initial learning stage, CFGExplainer learns im-
portant patterns by considering a global view of all ACFGs.
The node scoring component of CFGExplainer is trained using
many graphs from different ACFG families so that CFGEx-
plainer can generalize and learn similar patterns across the
same ACFG family (e.g., common patterns in Bagle malware
ACFGs) while at the same time learning discriminative pat-
terns across different ACFG families. Secondly, CFGExplainer
leverages the inherent importance of nodes in an ACFG for
the explanation task. In contrast, neither GNNExplainer nor
SubgraphX considers the global knowledge present across
multiple ACFGs, since they employee a local search heuris-
tic for providing explanations. While PGExplainer considers
global knowledge when it trains a generative deep neural
network, it gives more prominence in learning patterns from
the edge distribution in graphs. In ACFGs, nodes are more
important to an analyst since they represent code blocks.
Additionally, PGExplainer is trained to generate new graphs
that are similar to an ACFG classified by the GNN model.
In contrast, CFGExplainer directly learns the importance of
nodes in the graphs to be interpreted, which we believe is an
easier learning task.

We followed the metrics (i.e., accuracy) used in GNNEx-
plainer and PGExplainer to conduct experiments. SubgraphX
uses sparsity and fidelity to evaluate the effectiveness of ex-
plainers. The fixed step size in our experiments corresponds to
the fixed level of sparsity [31]. The accuracy results are com-
parable with fidelity−acc in [31], which shows the prediction
change by keeping the important structure and removing the
unimportant structure in the graphs. fidelity−acc computes
the difference between the accuracy of subgraphs and the
original graph. In the future, we plan to obtain more thorough
results with the sparsity and fidelity metrics by searching
combinations of subgraphs with different step sizes to decide
the best step size for an explanation.

C. Complexity Analysis

Below, we provide a complexity analysis on the explainers
presented in this section. Table IV gives the average time
taken to produce a single explanation for an ACFG. The
table shows that, on average, GNNExplainer and SubgraphX
take the most time to produce a single explanation (i.e.,
around 42.8 minutes and 127.8 minutes respectively). This is
because GNNExplainer and SubgraphX employ a local search
heuristic to identify explanations. In contrast, CFGExplainer
and PGExplainer generate explanations in around 3.9 and 6.4
minutes, respectively. CFGExplainer is around 11 times faster
than GNNExplainer and 33 times faster than SubgraphX. This

extra speed in explaining graphs comes at the cost of an offline
training procedure in both CFGExplainer and PGExplainer.
While both CFGExplainer and PGExplainer require an offline
training procedure, PGExplainer requires an input constructed
from edge embeddings, as opposed to node embeddings that
are used by CFGExplainer. Therefore, the maximum size of
the input to PGExplainer could be [N2, 2f] where N is the
number of nodes in the graph and f the embedding size
(N = 7352 and f = 128 in our work), whereas the input
to CFGExplainer is always of the size [N, f].

TABLE IV
EXPLANATION TIME

Explainer Offline Training
Time

Average Time for
Single Explanation

CFGExplainer 2 hours 11 minutes 3.9 ± 0.5 minutes
GNNExplainer - 42.8 ± 3.1 minutes
SubgraphX - 127.8 ± 10.2 minutes
PGExplainer 2 hours 46 minutes 6.4 ± 0.3 minutes

D. Qualitative Evaluation

This section provides a qualitative evaluation, where we
analyze the top 20% subgraphs produced by CFGExplainer
for interesting behavioural patterns in the malware.

For each malware family, we chose 11−15 samples for deep
static analysis. We perform two types of malware code analysis
based on the top subgraphs returned by CFGExplainer:
• Micro-level analysis: We try to understand the unique

malware patterns (e.g., obfuscation tricks) used by each
malware sample from the code blocks included in its top
subgraph.

• Macro-level analysis: We try to hypothesize the behav-
ior of each malware sample based on the code blocks
included within its top subgraph, particularly those Win-
dows API calls used.

Micro-level analysis: Sample micro-level analysis results
are provided in Table V. We have identified the following
malware patterns.

Code manipulation: The general-purpose registers store the
result of different operations and are one of the key factors to
recognize unique behaviors. For example, the register EAX
holds the return value for function calls. If the EAX register
is used by the instruction immediately following the function
call, then it could mean that a malware tries to manipulate the
return value of a function [32]. For example, we have identified
this type of code manipulation in the Bifrose malware sam-
ple. The instruction, [‘call’, ‘ds:Sleep’] followed by [‘mov’,
‘eax, [ebp+var EC.hProcess]’] is a function call immediately
followed by the instruction that modifies the return value of
the function call.

XOR obfuscation: XOR operation is often used in the
assembly code to set a register’s value zero by computing
the XOR of the same registers. Malware authors also use
the XOR instruction to obfuscate malicious activities in files
or programs. For example, by computing the XOR of a 4-
byte key with every byte of the data, malware authors can

9

TABLE V
SAMPLE ANALYSIS RESULTS OF TOP 20% BLOCK OF NODES IDENTIFIED BY CFGEXPLAINER.

No. Malware Family Type of unique patterns Examples

1 Bagel Code Manipulation call sub 414120; pop eax; add esi,eax;
Semantic-NOP obfuscation nop; nop; nop; nop; nop; nop;

2 Bifrose Code Manipulation Call ds:Sleep; mov eax, [ebp+var EC.hProcess];
XOR obfuscation xor [ecx],al; xchg al,ah; xchg ah,al; xor eax,ecx;

3 Hupigon XOR obfuscation xor al,55h;

5 Ldpinch Code Manipulation call sub 4010A6; pop eax;
Windows API calls and DLL’s push offsetsub 40467A;lpStartAddress; call CreateThread; call ReadFile;

5 Lmir Code manipulation call GetModuleFileNameA; mov eax,ebx;
XOR obfuscation xor bl,ds:byte 40B28C[eax];

6 Rbot Code manipulation call sub 619E4; mov eax,[ebp+var 18];
7 Sdbot Code manipulation call QueryPerformanceCounter; mov eax,[ebp+var 9C];

8 Swizzor Code manipulation call SEH prolog; mov eax,dword 4347E8;
XOR obfuscation xor eax,0FFFFFFFFh;

9 Vundo XOR obfuscation xor edi,68A25749h;
Semantic-NOP obfuscation xchg esp,esp; push esi; mov esi,esi; push edi; mov eax,eax;

10 Zbot Code manipulation call j SleepEx; movzx eax,wordptr[ecx];
XOR obfuscation xor edx,87BDC1D7h;

11 Zlob Code manipulation call ds:wsprintfA; mov eax,[ebp+hModule];

obfuscate the malicious data [33]. Presence of XOR operation
of two different registers or XOR operation of a register and
a constant (e.g. ‘xor’ ‘[ecx], 87BDC1D7h’), may represent an
encryption or decryption of malware code to hide the malware
data/code. We found this pattern in Bifrose and many other
malware samples.

Semantic-NOP obfuscation: NOP is a one-byte instruc-
tion used in the assembly program that does nothing. NOP
instructions may appear in benign or malicious applications.
Malicious software sometimes use NOP instructions or other
one-byte instructions that are semantically equivalent to NOP
(e.g., mov edx, edx) to delay the execution, obfuscate the
code (called Semantic-NOP obfuscation), or perform buffer
overflow attacks. While analyzing malware samples Bagel and
Vundo, we observed that many code blocks contain NOP
instructions that do not modify any memory contents. One-
byte instructions such “mov edx, edx”, “mov esi, esi”, or “xchg
dl,dl” are also used as aliases for NOP to waste memory cycles
and space [34]. Additionally, many instructions in Bagel and
Vundo are only looping themselves using unconditional jumps.

Macro-level analysis: We can also analyze the malware
behavior by analyzing the Windows API calls and Dynamic
Link Libraries (DLLs) made in the important nodes reported
by CFGExplainer. Windows API is the application program
interface through which malware communicates with the
system. For instance, malware can use Windows APIs to
perform file operations, Windows registry accesses, or network
communications. Using DLLs, malware can use other system
libraries [32].

As an example, we observed the following function calls in
Ldpinch malware family. Ldpinch tries to steal user credentials
and then pass them to attackers through network. We have
observed this behavior when analyzing Windows APIs called
by Ldpinch in the top 20% nodes. Ldpinch uses a backdoor
to gain access to user computers. It creates threads using

multiple approaches to perform malicious activities on user
computers. One approach used by Ldpinch is to load a new
malicious library into a process by passing the library name
to the CreateThread function call and specifying the start
address for the library. In another approach, Ldpinch first
uses the CreateProcess function call to create a new process.
This newly created process then creates two threads using the
CreateThread function call. One thread reads the data using
the ReadFile function call from one end of a pipe and sends
out the data through network using the send function call.
Another thread is used to receive the data using the recv
function call and then writes the data to another end of the pipe
using the WriteFile function call. The pipe is created using the
CreatePipe system call to perform read and write operations
[32]. This behavior shows that Ldpinch tries to get control of
the data coming to the socket.

VI. RELATED WORK

This section presents the related work for deep learning
techniques used for malware classification and interpretability
techniques.

A. Deep Learning for Malware Classification

There have been numerous attempts at identifying and
classifying malware using Machine Learning (ML) techniques
(e.g., [2], [3], [35], [36]). With the success of Deep Learning
(DL) in other domains such as computer vision and natural
language processing, there has been an increase in the usage of
DL methods for malware classification [4], [5], [6], [37]. The
works in [38], [39], [40] show that DL methods outperform
classical ML techniques such as decision trees and random
forests on the same training datasets.

With the success in computer vision, Convolutional Neural
Network (CNN) architectures have been successfully used
for malware classification [7], [8]. In these work, malware
byte sequences are transformed into binary or colored images

10

for processing (e.g., [41], [4]). Other researchers have used
sequence based deep learning models such as LSTM, GRU,
and attention mechanisms for malware classification (e.g., [9],
[10]). These models generally view program execution as
a sequence of system calls or API calls. Attributed by the
recent success in using Graph Neural Networks (GNNs) in
other graph-based domains [42], [43], [44], recent research
efforts have been targeted at using GNNs to classify malware
samples based on their control flow graphs [11], [12], [13],
[14]. These models have shown great promise in malware
classification due to their capability to handle block level
information as well as the topological relationships across
nodes (i.e., blocks) in the graphs. MAGIC [11] is one such
model that is built atop of DGCNN [45], where the DGCNN
component is combined with pooling layers to handle CFGs
of variable size. SDGNet [12] is a Graph Convolutional
Network (GCN) similar to MAGIC, except that it uses spectral
based laplacian convolution. GNNs have also been used to
detect program similarity and characterize code based on
CFGs. sciGCN [46] combines graph convolution with capsule
networks to identify similarity scores between CFGs of two
programs. funcGNN [47] builds atop of GraphSage [24] and
uses attention mechanisms to identify program similarity.
None of them explain classification results.

B. Interpretability Techniques

LEMNA [19] is one of the first explanation models that
aim to give reasons for malware classifications carried out by
DNNs, mainly Recurrent Neural Networks (RNN) and Multi-
Layer Perceptron (MLP) models. However, LEMNA does
not provide explanations for GNN based models that process
malware CFGs. Explanation techniques used in image and text
domains [48], [49], [50], [51] cannot be directly applied for
graphs [31] as they do not consider topological and structural
relationships in graphs. This has led to an increasing research
effort in developing explanation methods specifically targeting
graph data [31], [52], [53], [54], [18].

Gradient based methods such as Guided BP [55] and Grad
CAM [56] provide instance-level explanations using gradient
scores as a measure of importance with respect to predic-
tions. However, these models may suffer from the saturation
problem [57] due to masking attempts where the gradients
hardly reflect change in value for GNN outputs that change
minimally for some given inputs. Perturbation based methods
such as GNNExplainer [16] and PGExplainer [17] learn to
identify subgraphs by perturbing the original graphs by means
of identifying a mask for edges or features and then combining
it with the original graph. A successful mask would enable
the GNN model to predict similar results as when the original
graph was used. However, GNNExplainer [16] operates on a
local perturbation heuristic, where masks are learnt from the
beginning for each individual graph.

SubgraphX [18] is another local interpretability model that
generates important subgraphs with respect to GNN classifica-
tions. Unlike GNNExplainer, SubgraphX utilizes Monte Carlo
Tree Search (MCTS) [25] for this task. It populates a search

tree where nodes represent the subgraphs and edges show
parent-child relationships among them. A child subgraph is
obtained by pruning nodes from a parent subgraph. SubgraphX
utilizes shapley values [26], [27] as a score to identify impor-
tant graph structure that contribute to classification. Similar
to GNNExplainer, SubgraphX needs to locally search for
explanations for each graph individually. Therefore, it also
do not leverage any global information that may be present
across similar graph types. This is in contrast to our solution
CFGExplainer and PGExplainer [17] which leverage global
information to provide instance-level explanations.

PGExplainer leverages a generative deep neural network
that learns the edge distributions of the graphs in an offline
manner so that it can generate new graphs for a given family.
Once trained, this model is used to generate the masks to
prune out unimportant edges. CFGExplainer, in contrast, not
only prunes out unimportant edges, but also generates a score
for each node indicating whether the node is important for the
classification task. This enables malware analysts to identify
blocks of code containing malicious activities more quickly.
GraphLime [58], is a GNN explainer that is based on a local
interpretability model called LIME [59]. However, GraphLime
is designed for explaining node classification, instead of graph
classification and hence cannot be used for malware ACFG
classification. To the best of our knowledge, CFGExplainer
is the first solution designed to provide interpretations for
malware classification based on ACFGs.

VII. CONCLUSION

In this paper, we propose CFGExplainer, a deep learning
based model for interpreting malware classification results.
CFGExplainer identifies subgraphs of malware CFGs that
contribute most towards malware classification and provides
insight into the importance of the nodes within these
subgraphs. Our experimental results show that CFGExplainer
is able to identify top equisized subgraphs with higher
classification accuracy than three state-of-the-art graph
explanation solutions, namely GNNExplainer, SubgraphX and
PGExplainer. In the future, we plan to extend our experiments
with more datasets (e.g., MSKCFG [35]) and evaluate the
effectiveness of CFGExplainer using additional metrics such
as sparsity and fidelity in [18].

Acknowledgement: This work is supported in part by the
National Science Foundation under grant OAC-1738929. We
also thank the anonymous reviewers for their constructive
comments.

REFERENCES

[1] AV-TEST. (2021) Malware statistics & trends report by av-test.
https://www.av-test.org/en/statistics/malware, Accessed: 2021-06-04.

[2] B. N. Narayanan, O. Djaneye-Boundjou, and T. M. Kebede, “Perfor-
mance analysis of machine learning and pattern recognition algorithms
for malware classification,” in 2016 IEEE National Aerospace and
Electronics Conference (NAECON) and Ohio Innovation Summit (OIS).
IEEE, 2016, pp. 338–342.

[3] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classifica-
tion: A survey,” Journal of Information Security, vol. 2014, 2014.

11

[4] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Australasian Joint
Conference on Artificial Intelligence. Springer, 2016, pp. 137–149.

[5] B. Cakir and E. Dogdu, “Malware classification using deep learning
methods,” in Proceedings of the ACMSE 2018 Conference, 2018, pp.
1–5.

[6] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep android
malware detection,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, 2017, pp. 301–308.

[7] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and
F. Iqbal, “Malware classification with deep convolutional neural net-
works,” in 2018 9th IFIP international conference on new technologies,
mobility and security (NTMS). IEEE, 2018, pp. 1–5.

[8] B. Kolosnjaji, G. Eraisha, G. Webster, A. Zarras, and C. Eckert,
“Empowering convolutional networks for malware classification and
analysis,” in 2017 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2017, pp. 3838–3845.

[9] B. Athiwaratkun and J. W. Stokes, “Malware classification with lstm
and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 2482–2486.

[10] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2015, pp. 1916–1920.

[11] J. Yan, G. Yan, and D. Jin, “Classifying malware represented as
control flow graphs using deep graph convolutional neural network,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2019, pp. 52–63.

[12] Z. Zhang, Y. Li, H. Dong, H. Gao, Y. Jin, and W. Wang, “Spectral-based
directed graph network for malware detection,” IEEE Transactions on
Network Science and Engineering, 2020.

[13] A. Abusnaina, M. Abuhamad, H. Alasmary, A. Anwar, R. Jang,
S. Salem, D. Nyang, and D. Mohaisen, “Dl-fhmc: Deep learning-based
fine-grained hierarchical learning approach for robust malware classifica-
tion,” IEEE Transactions on Dependable and Secure Computing, 2021.

[14] H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar,
D. Nyang, and D. Mohaisen, “Soteria: Detecting adversarial examples
in control flow graph-based malware classifiers,” in 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2020, pp. 888–898.

[15] J. Busch, A. Kocheturov, V. Tresp, and T. Seidl, “Nf-gnn: Network
flow graph neural networks for malware detection and classification,”
in 33rd International Conference on Scientific and Statistical Database
Management, 2021, pp. 121–132.

[16] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnex-
plainer: Generating explanations for graph neural networks,” Advances
in neural information processing systems, vol. 32, p. 9240, 2019.

[17] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
“Parameterized explainer for graph neural network,” Advances in neural
information processing systems, vol. 33, pp. 19 620–19 631, 2020.

[18] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, “On explainability of graph
neural networks via subgraph explorations,” in International Conference
on Machine Learning. PMLR, 2021, pp. 12 241–12 252.

[19] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemna: Explaining
deep learning based security applications,” in proceedings of the 2018
ACM SIGSAC conference on computer and communications security,
2018, pp. 364–379.

[20] IDA Pro. https://hex-rays.com/ida-pro/, Accessed: 2021-06-04.
[21] Ghidra. https://ghidra-sre.org/, Accessed: 2021-06-04.
[22] B. Bai, J. Liang, G. Zhang, H. Li, K. Bai, and F. Wang, “Why attentions

may not be interpretable?” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 2021, pp. 25–34.

[23] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5, no. 7,
pp. 1–19, 1970.

[24] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[25] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree search:
A new framework for game ai.” AIIDE, vol. 8, pp. 216–217, 2008.

[26] E. Kalai and D. Samet, “On weighted shapley values,” International
journal of game theory, vol. 16, no. 3, pp. 205–222, 1987.

[27] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st international conference on
neural information processing systems, 2017, pp. 4768–4777.

[28] I. V. Serban, R. Lowe, L. Charlin, and J. Pineau, “Generative
deep neural networks for dialogue: A short review,” arXiv preprint
arXiv:1611.06216, 2016.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[30] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

[31] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural
networks: A taxonomic survey,” arXiv preprint arXiv:2012.15445, 2020.

[32] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software, illustrated ed. No Starch Press,
2012.

[33] M. K. A, Learning malware analysis : explore the concepts, tools,
and techniques to analyze and investigate Windows malware, 1st ed.
Birmingham ;: Packt, 2018.

[34] C. Jämthagen, P. Lantz, and M. Hell, “A new instruction overlapping
technique for anti-disassembly and obfuscation of x86 binaries,” in 2013
Workshop on Anti-malware Testing Research, 2013, pp. 1–9.

[35] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ah-
madi, “Microsoft malware classification challenge,” arXiv preprint
arXiv:1802.10135, 2018.

[36] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine learning
aided android malware classification,” Computers & Electrical Engi-
neering, vol. 61, pp. 266–274, 2017.

[37] Q. Le, O. Boydell, B. Mac Namee, and M. Scanlon, “Deep learning at
the shallow end: Malware classification for non-domain experts,” Digital
Investigation, vol. 26, pp. S118–S126, 2018.

[38] M. Rhode, P. Burnap, and K. Jones, “Early-stage malware prediction
using recurrent neural networks,” computers & security, vol. 77, pp.
578–594, 2018.

[39] D. Zhu, H. Jin, Y. Yang, D. Wu, and W. Chen, “Deepflow: Deep learning-
based malware detection by mining android application for abnormal
usage of sensitive data,” in 2017 IEEE symposium on computers and
communications (ISCC). IEEE, 2017, pp. 438–443.

[40] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in 2013
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing. IEEE, 2013, pp. 3422–3426.

[41] T. Hsien-De Huang and H.-Y. Kao, “R2-d2: Color-inspired convolutional
neural network (cnn)-based android malware detections,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018, pp.
2633–2642.

[42] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in International Conference on Learning Represen-
tations, 2018.

[43] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions
on neural networks and learning systems, 2020.

[44] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[45] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[46] P. Haridas, G. Chennupati, N. Santhi, P. Romero, and S. Eidenbenz,
“Code characterization with graph convolutions and capsule networks,”
IEEE Access, vol. 8, pp. 136 307–136 315, 2020.

[47] A. Nair, A. Roy, and K. Meinke, “funcgnn: A graph neural network
approach to program similarity,” in Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), 2020, pp. 1–11.

[48] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,” in
In Workshop at International Conference on Learning Representations.
Citeseer, 2014.

[49] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

12

[50] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and
A. Mordvintsev, “The building blocks of interpretability,” Distill, vol. 3,
no. 3, p. e10, 2018.

[51] H. Yuan, Y. Chen, X. Hu, and S. Ji, “Interpreting deep models for text
analysis via optimization and regularization methods,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 5717–5724.

[52] M. S. Schlichtkrull, N. De Cao, and I. Titov, “Interpreting graph neural
networks for nlp with differentiable edge masking,” in International
Conference on Learning Representations, 2020.

[53] Y. Zhang, D. Defazio, and A. Ramesh, “Relex: A model-agnostic
relational model explainer,” in Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, 2021, pp. 1042–1049.

[54] H. Yuan, J. Tang, X. Hu, and S. Ji, “Xgnn: Towards model-level
explanations of graph neural networks,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 430–438.

[55] F. Baldassarre and H. Azizpour, “Explainability techniques for graph
convolutional networks,” in International Conference on Machine Learn-
ing (ICML) Workshops, 2019 Workshop on Learning and Reasoning with
Graph-Structured Representations, 2019.

[56] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann,
“Explainability methods for graph convolutional neural networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 10 772–10 781.

[57] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in International
Conference on Machine Learning. PMLR, 2017, pp. 3145–3153.

[58] Q. Huang, M. Yamada, Y. Tian, D. Singh, D. Yin, and Y. Chang,
“Graphlime: Local interpretable model explanations for graph neural
networks,” arXiv preprint arXiv:2001.06216, 2020.

[59] M. T. Ribeiro, S. Singh, and C. Guestrin, “Model-agnostic interpretabil-
ity of machine learning,” arXiv preprint arXiv:1606.05386, 2016.

13

