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ABSTRACT Virtual Machine (VM) fault tolerance ensures high availability in cloud computing
environments. Proactive fault tolerance strategies avert service disruptions by detecting potential failures
before they occur and migrating the VMs to healthy hosts. In this paper, we propose Virtual Machine
Proactive Fault Tolerance using Log-based Anomaly Detection (VMFT-LAD), a semi-supervised, real-
time log anomaly detection model capable of detecting failures ahead of time to provide effective VM
fault tolerance. VMFT-LAD leverages the efficiency of the Matrix Profile for anomaly detection and
the log inference capability of Large Language Models (LLMs) to identify potential VM failures early,
while minimizing false positives. Our improved Matrix Profile enables VMFT-LAD to continuously
learn and identify potential failures, including unforeseen fault types, with minimal human intervention.
Additionally, its semi-supervised nature eliminates the need for labeled failure data. Extensive evaluations
on several datasets, using two distinct criteria to validate anomaly detection and early failure detection
capabilities, demonstrate VMFT-LAD’s outstanding performance. VMFT-LAD achieves a Numenta
Anomaly Benchmark (NAB) standard score of 90.74 for predicting failures in advance, with a high early
detection rate of 96.28% and a low false positive rate of 0.02%, enabling accurate and timely VM migration
before failures occur.

INDEX TERMS Adaptive learning, anomaly detection, cloud computing, fault tolerance, large language
models, log analysis, matrix profile, natural language processing, proactive migration, virtual machines.

I. INTRODUCTION

Cloud computing has revolutionized how computing
resources are provisioned and consumed. Virtual Machines
(VMs) are a fundamental component of cloud computing
environments, enabling on-demand resource allocation,
scalability, and efficient utilization of the underlying
hardware. Ensuring high availability and fault tolerance for
VMs is crucial to maintain service level agreements (SLAS)
and provide uninterrupted services to end-users, as most
cloud service providers rely on VMs [1].

VM migration plays a major role in facilitating proactive
fault tolerance, providing an unnoticeable transfer of running
VMs from one server to another on a millisecond to
microsecond scale. This technique is not only employed for
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fault tolerance but also for load balancing, resource consol-
idation, and administrative tasks. There are two approaches
for VM migration for fault tolerance: proactive and reac-
tive. Proactive fault tolerance involves identifying potential
failures before they occur and preemptively migrating the
VMs to healthy hosts, averting service disruptions. Whereas
reactive fault tolerance strategies start VM migration after
a failure has been detected, as a response, which may lead
to temporary service outages or even complete loss of the
VM state [2], [3], [4].

Proactive fault tolerance is particularly beneficial as it
minimizes downtime and data loss by preemptively address-
ing potential issues. It can identify early warning signs of
impending failures by monitoring VMs in real-time, allowing
for timely VM migration to healthy hosts [1], [2], [5].

VM failures can originate from various sources, includ-
ing hardware failures, software/firmware issues, network
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failures, resource overutilization, and configuration errors.
They can cause service disruption and data loss. For instance,
server clusters in Google data centers experience around
1000 server failures during their first year due to hard
drive failures, overheating issues, network failures and other
reasons [6]. Most importantly, [6] states there is a 50% chance
that the cluster overheats, taking down most servers in less
than 5 minutes. This further signifies the importance of VM
proactive fault tolerance in minimizing service disruptions
due to failures.

Logs, which contain system events and states, can serve
as valuable sources of failure indicators for proactive VM
fault tolerance. However, manually analyzing logs to identify
potential failures is impractical, especially in large-scale
cloud environments. This is where machine learning (ML)
techniques come into play, automating the process of failure
prediction based on log data analysis.

Although log data may not capture all possible VM failure
scenarios, logs can capture specific hardware and software
faults with greater accuracy than resource usage metrics such
as CPU, I/O, and memory utilization, which can fluctuate
and produce false positives. Log data record the actual
occurrence of errors rather than inferring problems from
resource consumption patterns, making logs a more reliable
indicator of system health [7].

The existing work [8], [9], [10], [11] on VM failure
prediction primarily utilizes supervised ML models trained
on labeled data, which requires significant human effort.
Also, they may struggle to adapt to changing environments
in real time or may not even identify failure types on
which they were not trained. Additionally, these studies
have largely focused on physical machine resource usage
history and physical component health data such as error
rates, overlooking the potential insights provided by VM and
server logs. Moreover, previous work [8], [9] has often been
limited to specific types of VMs, such as Virtual Network
Functions (VNFs), and has incorporated application-specific
data, overlooking the more commonly used generic VMs in
cloud computing environments. Furthermore, it is imperative
to identify the failure early, at least before the time it takes to
move out the VM. Still, the previous studies have disregarded
evaluating this aspect of their work.

An ideal proactive VM fault tolerance framework should
meet the following key requirements (Ahmad et al. [12] and
Lin et al. [13]).

o Early identification of failure indicators to facilitate
timely migration.

o Adaptability to changing environments,
updates, and hardware changes.

« Ability to identify any unforeseen failure or fault types.

o Capability to work with highly imbalanced data,
where failure data are very rare compared to healthy
states.

e Minimization of false positives (which can lead
to unnecessary migrations and service disruptions,
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increasing costs) and false negatives (resulting in service
disruptions due to failures).

« Ability to work independently, with little to no human
intervention.

In this work, we propose Virtual Machine Proac-
tive Fault Tolerance using Log-based Anomaly Detection
(VMFT-LAD), a semi-supervised log anomaly detection
model that addresses these research gaps and aims to address
the above objectives. The key contributions of VMFT-LAD
are as follows:

1) VMFT-LAD is a real-time semi-supervised log
anomaly detection model that leverages hypervisor
and server logs to identify VM failures ahead of time
(prior to migration failures), with the capability to
continuously adapt to changing log patterns at runtime
with minimal human intervention.

2) This work establishes a diverse log dataset consisting
of various VM failure scenarios.

3) We evaluated VMFT-LAD through rigorous com-
parison with state-of-the-art real-time and deep
learning-based anomaly detection models utilizing
anomaly detection benchmarks, validating its effective-
ness in terms of both early failure detection capability
and generalizability across any anomaly situation.

4) We validate the model’s early failure detection capa-
bility, by using detection lead time compared with
real-world VM migration data, ensuring sufficient time
for successful migration before failure occurs.

Our model analyzes logs utilizing a heap-based in-memory
storage mechanism combined with a modified Matrix Profile,
a fast and efficient time series data analysis technique.
It leverages the power of large language models (LLMs)
to understand the content of logs, continuously adapt to
changing log patterns, and identify potential failure indicating
logs among anomalous logs, including unforeseen fault types
with minimal human intervention. This approach enables
VMFT-LAD to operate without needing labeled failure data,
making it suitable for dynamic cloud environments.

The remainder of this paper is organized as follows:
Section II provides the background details on VM live
migration, system logs, log parsing, and anomaly detection
techniques. Section III discusses the data collection process.
Section IV presents the design and implementation details
of VMFT-LAD. Section V evaluates the performance of
VMFT-LAD using various metrics and compares it with
state-of-the-art anomaly detection models. Section VI shows
how the hyperparameters of our model affect its performance.
Section VII discusses the utility of log anomaly detection
in proactive VM fault tolerance and the implications of our
model. Section VIII reviews the related work. Section IX
concludes the paper.

Il. BACKGROUND
This section provides
to VMFT-LAD.

background details related
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A. VIRTUAL MACHINE LIVE MIGRATION

VM Live Migration is an effective technique for ensuring
high availability and uninterrupted service delivery in Cloud
Data Centers (CDCs). Live migration allows for the seamless
transfer of a running VM from one physical host machine
(source) to another (destination), with minimal disruption to
its operation [14]. This process involves copying the VM’s
memory state, CPU context, and virtualized devices to the
destination server while the VM and the applications running
in it continue to execute. By using live migration, cloud
administrators can proactively address potential VM failures
or resource constraints.

This proactive approach to fault tolerance contrasts with
reactive methods that handle failure after detecting it, which
may lead to temporary service outages or even complete loss
of the VM state. Live migration for proactive fault tolerance
works by identifying and anticipating potential hardware or
software issues with the host machine by using a predictive
algorithm, such as the one we propose to identify imminent
hardware/software problems, to trigger the live migration to
move the VM to a healthy host, preventing service disruption
due to a failure. Such a failure of VMs running in a cloud
environment may lead to customer dissatisfaction, SLA
violations, or even the loss of a critical workload [2], [5].

While live migration helps avert VM failure, the live
migration process itself might fail before the migration
completes, leading to a complete loss of the VM state. Live
migration fault tolerance techniques [3], [15], which use a
checkpointing mechanism, can be employed to prevent such
failures. However, utilizing such a mechanism is outside of
the scope of this research.

B. SYSTEM LOGS AND LOG PARSING
System logs contain live information regarding the system
status and events. These events can occur in the operating
system, applications, or hardware devices. Logs include
system events and statuses such as hardware changes,
application events, errors, warnings, performance metrics,
and security events. Logs help us understand the system state,
debug performance issues, and perform root cause analysis.
The structure of each log file is different and has a unique
format; however, each log line usually contains the timestamp
at which it was logged, application information, and the
actual log message. The log messages are text produced by
logging statements in program code such as print £ () and
logger.log () [16]. The events are logged as they happen
from currently running processes, so the logs are an ideal
source of information for live system status investigation.
Unstructured log data must be parsed to make it structured
and efficient for analysis [17]. An effective method is to
extract the log message from each entry. We can assign a
unique identifier for each message type called the log key.
For this, the parser must distinguish between each raw log
message’s constant and variable parts. The constant part is
analogous to the logging statement in the processes’ source
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code. For example, the log template for log message, "br0:
port 2 (tapl) entered forwarding state" is
"<x>: port <x>(tap<x>) entered <x> state"
which is the string constant from some logging statement
similar to,

printf ("%s: port %d(tap%ed) entered %s state”,
— deviceName, portId, tapIld, state)

Furthermore, Drain [16] is the state-of-the-art online log
parser that runs in an unsupervised manner and utilizes a
fixed-depth parsing tree to categorize incoming log messages.

C. LOG KEY SUBSEQUENCES
The parsed log file is a time series of the log keys. Given a log
key time series T = {1, f2, ..., t,—1, t,}, the subsequence of
interval of length m to a fixed position i is defined as, T; ,, =
{ticma1s tiemaas - - -5 tiz1, £;} Where #; is the i log key of the
time series T, and i > m, [ < n.

The distance between any two such subsequences can
be calculated by using any vector distance measures. The
most popular and the one used in Matrix Profile [18] is
the z-normalized Euclidean distance. For the given two
subsequences T; ,; and Tj ,, z-normalized Euclidean distance
is defined as,

Tim — Wi _ Tj‘m - K
o; Oj

Y

2
where u;, u; and o;,0; are the mean and the standard
deviation of two subsequences, T}, and Tj ;.

Given a subsequence T; ;, the vector of distances between
T: m and each subsequence of T is the distance profile, D; =
{dl‘,m, di,m—i—l’ ceey di,n—lv di,n}, where di,j is the z-normalized
Euclidean distance between T; , and Tj ;,

Using the distance profile for a subsequence Tj,,
we can quickly identify the closest matching subse-
quence to it, excluding its trivial match, by finding the
minimum distance profile value. The matrix profile P
is defined as the vector that stores this minimum dis-
tance for each subsequence in the time series 7, that
is, P = {min(Dy), min(Dp+1), ..., min(Dy—1), min(Dy)}
A small value in the Matrix Profile suggests that the
sub-sequence pattern appears in other parts of the time series,
known as a motif. In contrast, an unusually high Matrix
Profile value indicates that the given sub-sequence is unique
in the time series and could potentially represent an anomaly.

DE(Ti,m» Tj,m) = ”

D. ANOMALY DETECTION USING MATRIX PROFILE

Given a Matrix Profile P for a time series 7, anomaly
detection becomes trivial because the anomalous subse-
quences have a high distance value compared to the other
subsequences [18]. Using an appropriate threshold, we can
effortlessly identify the anomalous subsequences in the time
series, as shown in Fig. 1.

If we consider an online scenario, where the subsequences
arrive one after the other, the future subsequences, that is
the subsequences to the right-hand side of #; (current time-
step) are not known. The left matrix profile considers this
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FIGURE 1. An example of a matrix profile and left matrix profiles using Euclidean distance and relative distance.

and calculates the distances for a subsequence at time step
i based only on the left-hand-side subsequences. As shown
in Fig. 1, the first few values of the left matrix profile are
high because it does not have many subsequences to compare
to. This is called the warm-up period of the left matrix
profile [19].

We can take the left matrix profile value at time step
i as the anomaly score for the data point i. However, the
Euclidean distance (refer equation (1)) has no upper bound,
which makes it challenging to obtain an appropriate anomaly
threshold. As mentioned in [19], we can swap the distance
measure of the matrix profile algorithm with any suitable
distance measure. An ideal scenario would be to use a
distance measure that outputs a value bounded between 0 and
1. As shown in RAMP [20], the relative distance measure
would be ideal in this scenario, as it outputs a value between
0 and 1. The relative distance DR is defined as,

| Tin = Tiom| 1)
— ] ®
1Z5mly

Fig.1 shows the original time series, matrix profile, and left
matrix profiles for Euclidean and relative distance measures
for the same time series.

DX(T; p, Ty ) = min(l,

E. ANOMALY DETECTION WITH MACHINE LEARNING

Many researchers [11], [12], [17], [21], [22], [23], [24], [25]
have proposed several real-time ML-based anomaly detection
models in the past decade. While supervised models could
have superior performance due to being trained on labeled
data [11], [23], [24], [25], [26], they may be infeasible to
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utilize in dynamic environments where the drift in data leads
to excessive re-labeling efforts, making these approaches
often impractical.

Deep Learning (DL) based unsupervised/semi-supervised
models like Autoencoders [22], [27], and LSTM [17], [28],
[29] rely on learning benign patterns from a set of benign
logs. While not needing to specifically understand all possible
anomaly situations, there is still a need for an offline training
phase to effectively learn benign patterns, which could be
costly [26].

State-of-the-art semi-supervised log anomaly detection
models like DeepLog [17] and PLELog [29] are designed to
adapt to changing log patterns, either using human feedback
(as in DeepLog) or using word embedding [9], [28], [29] to
extract semantic information from log messages to estimate
the label resulting in a more robust and superior anomaly
detection capability. More recent log anomaly detection
models [8], [30] utilize a transformer architecture [31] to
extract more contextual information for even more robust log
classification.

The need for such advanced models is driven by real-world
scenarios where systems generate hundreds to thousands of
data streams, making thorough labeling infeasible. Moreover,
it’s impossible to identify all potential anomalous situations
a priori for training supervised models. These challenges
emphasize the necessity for real-time models such as Hier-
archical Temporal Memory (HTM) [12] and ARTime [32]
which are able to learn benign patterns and train their internal
weights in real-time, thereby being able to better adapt to
changes in dynamic environments where unforeseen anomaly
types may appear in the future.
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F. NATURAL LANGUAGE UNDERSTANDING

All logging statements generated by software applications
are written in natural language [9], [17], predominantly
in English. This allows us to leverage natural language
understanding (NLU) techniques to extract insights from
the log data, rather than interpreting them at a superficial
level. NLU, a field within Natural Language Processing
(NLP), aims to enable machines to interact with human
language and understand the meaning behind sentences.
In recent years, we have seen a massive boom in this area,
giving rise to transformer-based [31] large language models
(LLMs) like BERT [33] and GPT [34]. Some of these models
show comprehension ability that surpass human experts in
specific domains [35], [36]. It is shown that the size of
the LLM (number of parameters) is directly proportional
to its performance [37]; however, there are some relatively
small models fine-tuned for specific tasks that outperform
large models [38]. The success of LLMs can be mainly
attributed to few-shot learning (conditioning the model with
few examples) and zero-shot learning, where we directly
prompt instructions [39].

The ability to understand natural language can be leveraged
to gain insights from log data, which has information
about system events and behaviors. By applying NLU
techniques, we can extract contextual information from log
messages rather than treating them as sequences of log
keys. This leads to more effective anomaly detection, root
cause analysis, and improved interpretability of the models’
decisions.

Ill. DATA COLLECTION

This section discusses how log data is collected for testing
and model evaluation. We collected log data from 4 physical
machines over 5 months (nearly 170 days), simulating
different failure scenarios. Two physical machines were
deployed to simulate VM failures (source servers), and the
other two were set up to monitor the activity and log data
collection. The physical machines consisted of two IBM
System x3560 M4 - 48-core Intel Xeon E5-2697v2 machines
with 338 GB of memory connected with Gigabit Ethernet
acting as a source and a monitoring server, and two HP
7620 Workstation - 12-core Intel Xeon E3-1200v3 machines
with 16 GB of memory, also connected with Gigabit Ethernet
acting as a source and a monitoring server.

While public log datasets, such as Loghub [40], are readily
available, they have significant limitations for our specific
research needs. They lack log datasets related to VM/Server
failures, which is essential for our study. Moreover, they
do not include critical features we require for analyzing the
feasibility of proactive VM fault tolerance. Specifically, they
are missing essential metadata, such as timestamps associated
with the initial fault (in our case, the fault injection time)
and the eventual failure. These timestamps are necessary
for assessing the potential for implementing proactive fault
tolerance mechanisms in VMs.
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FIGURE 2. Data collection testbed architecture.

A. TESTBED

The high-level architecture diagram of our testbed setup is
presented in the Fig. 2. The servers had Ubuntu server host
OS and QEMU-KVM hypervisor installed. We configured
the rSyslog client and rSyslog server in the source and
monitoring servers, respectively, to collect and stream log
data from the source server. Some of the log files we collected
include kernel log, sudo log, systemd log, networkd log, other
application logs, and QEMU logs for each VM.

In the source server, we configured three VMs, each
running real-world and synthetic workloads to simulate
typical VM usage scenarios. On the monitoring server,
we set up a single VM running the Seige application [41]
to perform load testing on the web server running on the
source server, simulating client web requests. Additionally,
we implemented three modules: one for monitoring the
live/failure status of the VMs and source server, another for
collecting timestamps of VM/host failures, and a backup
module for pushing the collected log data and labels to Azure
blob storage [42] for later access.

The monitoring module works using a heartbeat protocol,
where the host and VMs send a signal to the monitoring
module every 15 seconds via an HTTP GET request using a
CRON (the periodic job scheduler of Linux) task to indicate
that they are alive. HTTP requests not only verify the VM
reachability but also verify that the applications running in
VMs function properly.

In normal conditions and under heavy load, the VMs are
expected to perform without any service disruption, without
dropping any connection, so for a general scenario, we define
the failure as the point at which the monitoring module does
not receive a heartbeat pulse from the host or the VMs within
18 seconds. We chose 18 seconds because it gives sufficient
time (3 extra seconds) to account for slight timing differences
and other delays and to confirm total VM failure. For specific
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scenarios, such as Out of Memory (OOM), we define the
failure point differently, as described below (section III-B).

B. FAILURE SCENARIOS
According to Vishwanath and Nagappan [43], 78% of
server failures are attributed to hard-disk-related issues,
while 5% are caused by memory-module-related problems.
According to Cano et al. [44], about 30% of the failures
in private cloud servers are related to HDD failures, while
16% are caused by memory-related issues. The CPU and
motherboard are considered the most reliable hardware
components in servers [43], and they observed no failures in
these components during their study period. When it comes
to VM failures, most instances are due to resource over-
utilization [11], [45], such as physical machines running out
of memory and very high CPU utilization. Handling of VM
failures that originate from the network failure is outside the
scope of this research because the network failure may impact
the migration process, rendering VM migration impractical
as a solution for network-related failures. Given the low
probability of individual servers failing within a year and
the need to study a variety of failure scenarios, we opted to
simulate server/VM failures using fault injection techniques
rather than waiting for actual failures to occur.

We simulated the following errors in this study to collect
log data for the evaluation of VMFT-LAD,

1) Out of memory (OOM) failure - The OOM failure
was induced by over-allocating the total memory for
VMs by 25% of the host’s total physical memory capac-
ity. In a cloud environment, OOM failure can occur if
the server consolidation algorithm decides to allocate
VMs over the available physical memory capacity
of the host, due to host resource under-utilization
by VMs, and if there is a sudden increase of VM
memory utilization. Additionally, it can occur due to
software faults or malicious software installed on the
host. During normal operation, VMs utilize the host’s
swap area to manage the over-allocation. We injected
faults by stressing the VMs’ memory using the stress
[46] tool. We consider the VM failure as the log
timestamp where the host OS invokes the OOM-killer
to kill the VM process or the failure label by the
monitoring module, whichever is earlier. Following
are some sample logs collected for OOM failure,

gemu-system-x86 invoked oom-killer:

— gfp_mask=0x100cca (GFP_HIGHUSER_MOVABLE),
— order=0, oom_score_adij=0

Call Trace:

dump_stack+0x6d/0x8b

dump_header+0x4f/0xleb
oom_kill_process.cold+0xb/0x10
out_of_memory+0x1cf/0x500

2) Hard disk failure - We simulated hard disk failure
according to [7] by creating a faulty pseudo disk
using the Linux SCSI_debug module. Failures were
defined as the point where we continuously received
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unrecoverable read errors for block reads from the
faulty disk. We ignore the label of the monitoring
module as this is a simulated failure. Following

are some sample logs collected for HDD failure,
blk_update_request: critical medium error,

— dev sdb, sector 4576 op Ox0: (READ) flags
— 0x80700 phys_seg 32 prio class 0

FAILED Result: hostbyte=DID_OK

— driverbyte=DRIVER_SENSE

Sense Key : Medium Error [current]

Add. Sense: Unrecovered read error

CDB: Read(10) 28 00 00 00 12 30 00 00 08 00

3) Buffer-IO error - Buffer I/O error happens when there
is a problem transferring data between the storage
device and memory. Multiple such errors indicate
a failure in the disk controller, loose connection,
or filesystem corruption [7]. Similar to hard disk
failure, for buffer I/O errors, we defined failure as
the point where we continuously encountered several
errors, and as this is a simulated error, we ignore
the label of the monitoring module. Following are

some sample logs collected for Buffer-IO error,
buffer_io_error: 62 callbacks suppressed
Buffer I/0 error on dev dm-0, logical block
— 0, async page read

Buffer I/0 error on dev dm-0, logical block
— 1, async page read

4) CPU over-utilization - We induced VM failure due
to CPU over-utilization by over-allocating the total
VM vCPUs by 30% of the available host CPU
cores. This failure can happen in a cloud environment
if the server consolidation algorithm over-allocates
VMs on the host, or due to software faults or
malicious software installed on the host, which may
lead to CPU overheating. During normal operation,
the VMs functioned without any noticeable issues to
performance. We used the stress [46] tool to simulate
a failure by stressing the CPU on VMs and the
host. For this failure, we consider the failure label
from the monitoring module. Following are some

sample logs collected for CPU over-utilization failure,
perf: interrupt took too long (3975 > 3970),
— lowering

— kernel.perf_event_max_sample_rate to

— 50250

INFO: task gemu-system-x86:1431 blocked for
— more than 3 seconds.

Not tainted 5.4.0-166-generic #183-Ubuntu
gemu-system-x86 D 0 1431 1067

— 0x00000000

Call Trace:

__schedule+0x2e3/0x740

schedule+0x42/0xb0

io_schedule+0x16/0x40
wait_on_page_bit+0x120/0x240

C. DATA PREPROCESSING

This section explains the preprocessing steps to process the

raw log data into a uniform format before anomaly detection.
The collected raw log data are in different formats,

with logging patterns unique to each log file. However,
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TABLE 1. Number of log lines in each dataset under each region.

Dataset Log lines
Benign  Pre-failure  Post-failure Total

HDD 79345 74574 10901 164820
OOM 96833 7365 26196 130394
Buffer-I0 369499 97918 16274 483691
CPU 58192 50187 13429 121808
Benign 113313 - - 113313
Total data points 1014026

as mentioned in Section II-B above, they have a common
pattern of timestamp and log messages. To convert them
to a uniform format, we extract the timestamp and the log
message from the different types of log files. After extracting
the log message, we remove unnecessary logs, such as CRON
logs, that were produced by the VM and host monitoring
system. Next, we utilized the DRAIN-3 [47] log parser,
as explained in Section II-B above, to extract the log template,
log template ID (log key) and parameters (values).

We simulated approximately 130-150 instances of each
failure scenario, resulting in a total of 69/ datasets with more
than one million log lines. Each dataset has 3 distinct regions:
benign region (normal state before fault injection), pre-
failure region (after fault injection), and post-failure region
(after failure point). The datasets were formatted similar to
Numenta Anomaly Benchmark (NAB) [48]. Table 1 presents
the number of log lines in each dataset under each region
of the dataset. Collected datasets and labels are available
publicly.!

IV. DESIGN AND IMPLEMENTATION
This section provides the design and implementation details
of VMFT-LAD, an online log anomaly detection model
for proactive VM fault tolerance. Fig. 3 illustrates the
architecture of our model. It has three main sub-components:
an anomaly detection module, a subsequence store, and an
adaptive learning module to handle anomalous situations.
Our model runs time-stepped, each time-step is defined
as the moment we receive the next log line, so receiving
a new log line would be a new time step. For each time
step, the anomaly detection module takes in a sequence
of log keys of length m, created using the new and
past m — 1 log keys. The anomaly detection module
is implemented by utilizing a modified matrix profile
model [18]. For each input subsequence, it calculates an
anomaly score based on the subsequences stored in the
subsequence store. When the anomaly score exceeds the
preset threshold 6, the anomaly detection module invokes
the adaptive learning module and passes in the anomalous
subsequence to handle the anomaly situation. An anomalous
situation can occur for two reasons: the anomaly detection
module encountered actual fault-related log data, or it can be

VM failure log dataset: https://github.com/CloudnetUCSC/NAB/tree/
master/data
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FIGURE 3. The architecture of VMFT-LAD.

due to normal but previously unseen logging patterns. While
most previous works ignore this false-positive situation, some
models [17], [20] utilize human feedback to adjust their
weights to avoid similar false positives in the future. Getting
human feedback for data streams of thousands of servers in
a cloud data center is slow and impractical, so in this work,
we employ a Large Language Model (LLM) to replace human
feedback.

The adaptive learning module gets the log template for
each log key in the anomalous subsequence and calls an
LLM to determine whether the given set of log templates
contains failure-related log messages. With that knowledge,
it can decide whether to send the migration signal to QEMU
or update the comparison sequence store with the current
subsequence.

The subsequence store is implemented using max-heap and
hash set data structures. Each subsequence is stored alongside
the number of hits to that subsequence. The number of hits is
the number of times the subsequence gets used during the run,
and the max-heap is maintained according to this number.
This ensures we access the subsequences in the order of their
usage, so more frequently used subsequences get matched
first. The hash set is used to prevent the storage of duplicate
subsequences.

A. ANOMALY DETECTION

The anomaly detection works in a semi-supervised manner,
where the matrix-profile-based model learns the normal state
log key patterns within a given period. After the initial
learning period, the model calculates an anomaly score for
each incoming log key subsequence. This method aligns
with other anomaly detection models, specifically, those
implemented/tested in the Numenta Anomaly Benchmark
(NAB) [48].

1) The vanilla Matrix Profile was modified similar
to [20] using the relative distance measure as discussed
in Section II-D above instead of the z-normalized
Euclidean distance.
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TABLE 2. Symbol legend for algorithms.

Symbol  Description

Tim Current subsequence

j Current time step

Subsequence length (Window size)

Initial learning period (Probationary period)
Anomaly threshold

Similarity threshold

Subsequence Store

Anomaly score for time step

AS I ~

>

2) Unlike [20], we only utilize unique subsequences in
the initial training period for comparison, dramatically
reducing the model’s memory footprint. We addi-
tionally employ a max-heap to order the comparison
subsequences according to their frequency of usage
so that the most frequently used subsequences will
get matched first. This significantly improves the
model’s speed because the log patterns inherently have
frequently repeating patterns.

3) Unlike the vanilla Matrix Profile [18], we are not
interested in finding motifs (identification of similar
patterns), so we employ a two-level thresholding
strategy to increase the efficiency of our model.

4) When the model identifies a subsequence that causes
false positives, it suppresses it and updates its com-
parison set to avoid giving false positives to similar
subsequences in the future.

Table 2 summarizes the symbols used in the algorithms.

Algorithm 1 Anomaly Detection

1: procedure AnomalyDetection(M, i, T; ,, 0, 1, C)
2 if i < M then
3: C.push(T; )
4: return O
5 end if
6: Bi <1
7 for 7; ,, in C do
Calculate relative_distance for T; ,, and Tj ,
with equation (2)
9: if relative_distance < n then
10: C.increment _hits(T; ;)
11: Bi < relative_distance
12: break
13: else if relative_distance < B; then
14: Bi < relative_distance
15: end if
16: end for
17: if B; > O then > Anomaly detected
18: Bi < AdaptiveLearning(7; ,, C)
19: end if
20: return S;

21: end procedure
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Algorithm 1 presents our proposing anomaly detection
algorithm. For every time step i, the anomaly detection
module takes in the current subsequence 7T; ,,. If the current
time step is in the initial training region, we push the
subsequence to the subsequence store (discussed in the
section IV-C) and return O as the anomaly score, as we are
currently in the training phase (Lines 1-5). This way, the
model learns the unique log patterns in the initial benign
region.

Once the training period is over, the model will then
calculate the anomaly score for the current time step §;. First,
we assign 1 as a temporary anomaly score (Line 6). Then,
we iterate over the benign subsequences in the subsequence
store in the order of their frequency of usage. For each
subsequence Tj,,, we calculate the similarity of 7}, and
Tim using the relative distance measure discussed in the
section II-D above (Line 8). If the distance between T} ,, and
Tim is less than the similarity threshold 7 (that means we
found a matching benign subsequence), then we increase the
number of hits of T, and set the current distance as the
anomaly score and break out of the loop (Lines 9-12).

Here, we utilize two different thresholds: the similarity
threshold (1) and the anomaly threshold (9). The similarity
threshold (1) defines the distance at which we consider
two subsequences similar, while the anomaly threshold (6)
determines the minimum distance at which we classify a
subsequence as anomalous if no similar subsequence is found
in the comparison set. The similarity threshold must be
strictly less than the anomaly threshold (n < 0); otherwise,
the model would identify an anomalous subsequence as
similar to some subsequence in the comparison set, resulting
in no anomalies being detected.

Also, notice that, unlike the original matrix profile, we did
not iterate over all the subsequences to find an exact match;
instead, we opted for a close enough solution because we are
not interested in finding motifs. Next, if the distance for the
current subsequence 77 ,, is less than the previous minimum
distance, we update the minimum distance (Lines 13-15).

Once the iteration terminates, we will have the minimum
distance for T; ,, compared with all Tj ,, in the subsequence
store as the anomaly score for the current time step i.
If the anomaly score g; is less than the anomaly threshold
0, we return it. Otherwise, we must identify whether the
anomaly is due to an actual failure-related log or an
unanticipated normal log pattern. For that, we call the
adaptive learning module (Lines 17 -19).

B. ADAPTIVE LEARNING

The adaptive learning module depicted in the algorithm 2
takes in the anomalous log key subsequence T} ,, and it will
get the log template corresponding to each log key ¢ in T;
from the log parser, DRAIN-3. Then, we call an LLM to
check for failure/fault indicating logs in the log templates.
The LLM acts as a proxy human user and infers the natural
language log, considering the current context to classify
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whether the given log template contains hardware or software
failure/fault-related information.

The following techniques can be used to align the LLM
to better understand the context of VM failure-related logs,
as understanding the context of VM logs would potentially
require domain knowledge a vanilla LLM would not know
of unless it is guided in that direction. Few-shot learning:
we condition the LLM with a few benign log samples to
let the LLM understand the context before finally prompting
using the current log template to classify it as failure-related
or not. Zero-shot learning: we prompt the LLM directly
with the log template to classify it without providing any
samples. Fine-tuning: we can fine-tune the LLM before
prompting to make the model understand the context better
with several log samples.

With experimentation, we found that few-shot learning,
with only a few benign log template samples, works best
for log inference. Additionally, removing the parameter
placeholders like <:*:>, <:NUM:>, <:HEX:> from the log
templates greatly improved the classification accuracy of the
LLMs we tested. Zero/few-shot prompting is advantageous
because it is less costly as there is no training require-
ment [37], [39], and the LLM will be used as is for inference.
Fine-tuning with only benign log data might cause the LLM
to lose its inference capability due to overfitting, as this was
our experience with fine-tuning LLMs. We will discuss this
later in Section VII below.

Algorithm 2 Adaptive Learning
1: procedure AdaptiveLearning(7; ,, C)

2 fort;in T;,, do

3 log_template <— LogTemplateExtractor(z;)
4 faulty_log < Loglnference(log_template)
5: if faulty_log = True then
6
7

8
9

return 1
end if
end for
C.push(T; ,)
10: return 0
11: end procedure

> True positive

> False positive

We iterate through the log keys in the anomalous subse-
quence and then call the LogTemplate extractor function to
get the log template corresponding to the log key from the log
parser (Line 3). Then, we call an LLM to check whether the
current log template contains failure/fault indicators using the
Loglnference function (Line 4). The LogInference function
works by prompting the LLM with the following prompt
with 25 randomly selected benign log templates (for few-shot
learning):
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Classify the given log line into faulty or
— normal.

Following are some of the normal state logs.
— Refer to them when deciding whether the
— given log template contains a failure

— 1ndicator or normal.

Normal state logs:

br0: port entered state,

device promiscuous mode,

Command: Classify the given log line as

— faulty or normal, and give a short
reason in 4-5 words. The faulty log
lines should contain a valid reason for
failure. The response should only
contain the result and the reason.

DR

Log line: < Log template here >
Result:

The LLM will return a result with a reason for the
choice. We limit the output length by setting the maximum
number of new tokens generated to 15. The result is
then passed to a function to detect whether it contains
‘faulty’ or not and return True if it does and False
if not.

For zero-shot learning, we directly prompt the model
with the anomalous log template to classify it into one
of three classes: normal, faulty, or unsure. If the model
classifies it as faulty, we return True, and if not, False.
One issue with directly using LLM output is that LLMs
tend to have hallucination issues, that is, the text they
generate might be incorrect, or nonsensical. However, here
we incorporate only a binary result (either faulty or not),
with minimal text generation (4 or 5 words), additionally,
based on our LLM ablation study presented in section VII-C,
while not perfect, the LLM output can differentiate between
a failure-related anomalous log and a normal log line that
was identified as anomalous but does not contain any failure-
related information.

If any of the log templates in the anomalous subsequence
contains a failure-related log, we take it as a true positive
and return 1 as B; (Lines 5-6). If not, this is a false
positive, and to prevent future false positives due to the
same subsequence, we update the subsequence store with the
current subsequence and return O as B; (Lines 9-10). This
module helps to identify benign (normal-state) log sequences
that occur after a long time and may not be present in the
initial learning period. These log sequences will appear as
anomalous logs but actually are not failure-related. This is
a limiting factor in the left matrix profile and in models like
RAMP [20], where they mark such logs as anomalous with
high confidence.

C. SUBSEQUENCE STORE

The subsequence store is responsible for efficient storage and
retrieval of log key subsequences with their number of hits.
It has a set S that only stores unique subsequences and is
ordered according to the number of hits to the subsequence
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using the max-heap heapify algorithm. The subsequence store
has two primary operations: push, which is responsible for
inserting a subsequence if it does not exist (Lines 2-5), and
increment _hits, responsible for incrementing the number of
hits of a given subsequence (Lines 8-11). Both operations
maintain the heap property by calling the heapify operation
after making changes to S.

Algorithm 3 Subsequence Store
IS < {}
2: procedure push(7; ;)
3: if T;,, ¢ S then

> S is an ordered set

4: S < SU{(d : Tip, hits : 1)}

5 Heapify S according to the number of hits of each
subsequence

6: end if

~

: end procedure

8: procedure increment_hits(7; ,,)

9: t < S.get(T;m)

10: t.hits < t.hits + 1

11: Heapify S according to the number of hits of each
subsequence

12: end procedure

We implemented the subsequence store using a hash set
and a max heap. The max heap is implemented using a
list that maintains the max heap property. When inserting a
new subsequence, we check the hash set to see if the given
subsequence is already present.

The worst-case time complexity of VMFT-LAD for
calculating anomaly score for a subsequence 7; ,, is bounded
by O(lm), where [ represents the size of the subsequence
store (the number of subsequences stored) and m is the
subsequence length (window size).

This efficient implementation of the subsequence store,
combined with the modified matrix profile algorithm
and the adaptive learning module leveraging LLMs,
allows VMFT-LAD to effectively detect anomalies in
log data and proactively identify potential VM failures
with no human intervention. The adaptive learning capa-
bility further enhances the model’s ability to handle
false positives and continuously improve its performance
over time.

V. EVALUATION
This section presents the evaluation of our model,
VMFT-LAD, under the following metrics:

« Receiver Operator Characteristics (ROC) under two
criteria

o Area Under the Curve (AUC) for ROC

« Numenta Anomaly Benchmark (NAB) scores under two
criteria

« Execution speed

178960

A. EVALUATION CRITERIA
We evaluated the performance of the models under two
different criteria to check the models’ anomaly detection
ability in general and to check for models’ early failure
indicators detection ability:

1) CRITERIA-1: RELAXED

Under this criterion, the model is expected to detect failure
indicators after the fault injection point and even within the
failure region. A True Positive (TP) is counted when the
model detects an anomaly in the pre-failure region or after
the failure has occurred. This criterion serves as a baseline
to verify if the model can correctly identify failures without
considering the strict requirement of detecting them before
the failure point.

2) CRITERIA-2: STRICT

This criterion is stricter and requires the model to detect
failures before the failure point. A True Positive (TP) is
counted when the model detects an anomaly in the pre-failure
region. This criterion considers the requirement of predicting
failure before the failure point, which allows the successful
migration of VMs to the destination server without any issues
to the VM.

For both criteria, if a model detects an anomaly in the
benign region of a dataset (the region before fault injection),
it is classified as a False Positive (FP.) A False Negative (FN)
is defined as the model’s failure to identify the anomaly in
the pre-failure region or the failure region. Similar to NAB,
we do not consider any anomaly flagged by the models during
the initial learning period, in all the models except DeepLog,
because Deeplog is pre-trained with benign data, whereas
the other models including VMFT-LAD learn online during
the learning period.

B. EVALUATED MODELS

We evaluated the VMFT-LAD model with different LLM
configurations using both few-shot and zero-shot learning,
along with selected four models implemented and evaluated
in the Numenta Anomaly Benchmark (NAB) [48], and
DeepLog [17] for comparison with the state of the art.

1) VMFT-LAD without feedback: This is the baseline
version of our VMFT-LAD model that does not utilize
any feedback mechanism from a large language model
(LLM).

2) VMFT-LAD with LLM: Several variants of the
VMFT-LAD model are evaluated, each incorporating
a different LLM and different model conditioning
techniques. These LLMs include:

e GPT-3.5 turbo: This is a state-of-the-art LLM
known for its exceptional performance on a wide
range of tasks.
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o Falcon 7B, Cyrax 7B, and Emerton Monarch 7B
LLMs: These are high-scoring LLMs based on the
Hugging Face Open LLM Leaderboard [49]>

o Bart Large (Zero-Shot): Bart Large is the most
popular open-source zero-shot text classifier in the
Hugging Face model library °

3) HTM: This model uses a different anomaly detection
approach based on the Hierarchical Temporal Memory
(HTM) architecture [12]. This is a state-of-the-art
anomaly detection model and is used in many real-
world projects.

4) KNN-CAD: K-Nearest-Neighbours ~ Conformal
Anomaly Detection (KNN-CAD) [21] is a K-Nearest
Neighbors (KNN) based non-parametric anomaly
detection model.

5) EXPOSE: EXPected Similarity Estimation (EXPoSE)
[50] is a non-parametric anomaly detection model
based on a kernel function to measure similarity
between data points.

6) ARTime: ARTime [32] is based on Adaptive Reso-
nance Theory (ART), and this model outperforms the
state-of-the-art model HTM in NAB.

7) DeepLog: DeepLog [17] is a popular log anomaly
detection model based on an LSTM model; It uses
Drain [16] as its log parser.

VMFT-LAD and other NAB models train online, so we
define the first 150 data points of each dataset as the training
region (which is roughly 15% of each dataset instance);
we made sure that each instance of the dataset had at least
400 benign data points initially.

The chosen hyperparameters of the VMFT-LAD model for
the evaluation are as follows - Window size (m): 5, learning
period (M): 150, similarity threshold (n): 0.05, anomaly
threshold (9): varied from O to 1 for ROC. We also explored
how these hyperparameters affect the performance of our
model in the next section (section VI). For the NAB models,
we use the default parameter values (some of the models were
parameterless.)

All LLMs used to evaluate VMFT-LAD are conditioned
with 25 randomly selected benign log samples so that the
model can better understand the VM failure context. The
Bart Large (Zero-Shot) model is an exception, as it is
specifically evaluated to assess results using an LLM without
any conditioning.

The DeepLog model is pre-trained with 2400 benign
log sequences from our collected dataset. We tuned the
hyperparameters of the DeepLog log key anomaly detection
model to obtain the best results, which are presented
below. Hyperparameters - classes: 750, candidate keys: 250,
window size: 20, No. of recurrent LSTM layers: 2, hidden
layer size: 64

2As of February 2024.
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C. EVALUATING MODEL PERFORMANCE: ROC CURVE
ANALYSIS

Figure 4 presents the Receiver Operator Characteristics
(ROC) curves for each dataset using all evaluated models.
The ROC curve is a graphical representation of the trade-off
between the true positive rate (TPR) and the false positive
rate (FPR) at different classification thresholds. A model
with better performance will have an ROC curve closer
to the top-left corner of the plot, indicating a higher TPR
and a lower FPR. Table 3 presents the Area Under the
Curve (AUC) values for the ROC curves, which provide
a quantitative measure of the overall performance of the
models. Higher AUC values indicate better classification
performance.

1) HDD FAILURE DATASET

Under the relaxed criteria (i.e., Criteria-1), the VMFT-LAD
model with GPT 3.5 turbo LLM (AUC: 0.999) and ARTime
(AUC: 0.997) exhibits near-perfect performance for the HDD
failure dataset. The VMFT-LAD with Falcon 7B, Cyrax 7B,
and Emerton Monarch 7B LLMs perform exceptionally well
(AUC: 0.992-0.996), closely followed by the VMFT-LAD
without feedback (AUC: 0.992), HTM (AUC: 0.988), and
DeepLog (AUC: 0.95). KNN-CAD (AUC: 0.684) and
EXPOSE (AUC: 0.512) show relatively poorer performance
for this dataset.

Under stricter Criteria-2, the VMFT-LAD model with GPT
3.5 turbo LLM (AUC: 0.999) continues to exhibit excellent
performance. However, the ARTime model (AUC: 0.973)
slightly underperforms compared to Criteria-1. All other
models performed relatively well for the HDD failure dataset
(AUC around 0.9), except for KNN-CAD (AUC: 0.659)
and EXPOSE (AUC: 0.512), which showed relatively poorer
performance.

2) CPU OVER-ALLOCATION FAILURE DATASET

For the CPU over-allocation failure dataset, the VMFT-LAD
model with GPT 3.5 turbo LLM (AUC: 0.999) stands out
with an exceptional ROC curve, achieving nearly perfect
classification performance under Criteria-1. The HTM model
(AUC: 0.888) outperformed all the other models, including
VMFT-LAD, with other LLMs. The VMFT-LAD without
feedback (AUC: 0.678), the ARTime model (AUC: 0.780),
and the DeepLog model (AUC: 0.783) exhibit moderate
performance, while KNN-CAD (AUC: 0.677) and EXPOSE
(AUC: 0.511) struggle with this dataset.

Under the stricter Criteria-2, the VMFT-LAD model with
GPT 3.5 turbo LLM (AUC: 0.996) and, notably, the DeepLog
model (AUC: 0.783) maintained their performance. The
HTM model (AUC: 0.680) and VMFT-LAD with Emerton
Monarch 7B (AUC: 0.669) LLMs perform reasonably well.
Other models, including VMFT-LAD without feedback
(AUC: 0.588) and especially ARTime (AUC: 0.458), strug-
gled with this dataset.
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FIGURE 4. Receiver Operator Characteristics (ROC) curves for each dataset using all evaluated models.

3) OOM FAILURE DATASET

In the case of the OOM failure dataset, the VMFT-LAD
model with GPT 3.5 turbo LLM (AUC: 0.999) demonstrates
outstanding performance under relaxed Criteria-1, closely
followed by the ARTime (AUC: 0.986), VMFT-LAD with
Cyrax 7B LLM (AUC: 0.974), and the HTM model (AUC:
0.977). The VMFT-LAD with Falcon 7B, with Emerton
Monarch 7B, and without feedback also performs reasonably
well (AUC around 0.9-0.965). VMFT-LAD with Bart Large
(Zero Shot) and DeepLog also exhibit good performance
(AUC: 0.836). KNN-CAD (AUC: 0.626) and EXPOSE
(AUC: 0.499) struggle with this dataset.

In the case of the OOM failure dataset under stricter
Criteria-2, the VMFT-LAD model with GPT 3.5 turbo
LLM (AUC: 0.998) continues to demonstrate outstanding
performance. The VMFT-LAD with Cyrax 7B LLM (AUC:
0.899) and DeepLog (AUC: 0.836) models performed well,
while the ARTime model (AUC: 0.546) showed very poor
performance compared to Criteria-1. KNN-CAD (AUC:
0.304) and EXPOSE (AUC: 0.499) continue to struggle
significantly.

4) BUFFER 1/0 ERROR DATASET

For the Buffer I/O error dataset under relaxed Criteria-1, all
the models achieve near-perfect classification performance,
with AUC values above 0.99, except for VMFT-LAD with
Falcon 7B LLM feedback (AUC: 0.978), which shows
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relatively low performance compared to others. KNN-CAD
(AUC: 0.607) and EXPOSE (AUC: 0.501) again show very
poor performance for this dataset.

Under stricter Criteria-2 for the Buffer-1/0 error dataset,
most models performed well, with VMFT-LAD models and
HTM achieving AUC values above 0.98. DeepLog model also
performed well (AUC: 0.975). The VMFT-LAD with Falcon
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TABLE 3. Area Under the Curve (AUC) results for ROC curves.

Models

Dataset
Buffer-10 CPU

HDD OOM

VMFT-LAD no feedback  0.992  0.903 0.993 0.678
VMFT-LAD w/ GPT 3.5 turbo ~ 0.999  0.999 0.999 0.999
VMFT-LAD w/ Falcon 7B 0.996  0.965 0.978 0.678

Criteria-1: relaxed
(Evaluates anomaly detection
capability)

VMFT-LAD w/ Cyrax 7B 0.992  0.974 0.997 0.754
VMFT-LAD w/ Emerton Monarch 7B 0.996  0.909 0.993 0.817
VMFT-LAD w/ Bart Large (Zero Shot)  0.991  0.836 0.993 0.725

HTM 0988 0.977 0.99 0.888
KNN-CAD 0.684  0.626 0.607 0.677
EXPOSE 0.512  0.499 0.501 0.511
ARTime 0997  0.986 0.995 0.780
DeepLog  0.95 0.836 0.975 0.783

VMFT-LAD no feedback  0.987  0.657 0.992 0.588
VMFT-LAD w/ GPT 3.5 turbo ~ 0.999  0.998 0.999 0.996
VMFT-LAD w/ Falcon 7B 0.993  0.767 0.962 0.588

Criteria-2: Strict

VMFT-LAD w/ Cyrax 7B 0.989  0.899 0.997 0.594

VMFT-LAD w/ Emerton Monarch 7B 0.995  0.667 0.992 0.669

(Evaluates early failure prediction
capability)

VMFT-LAD w/ Bart Large (Zero Shot)  0.987  0.621 0.993 0.634

HTM 0987 0.623 0.989 0.680
KNN-CAD  0.659  0.304 0.607 0.664
EXPOSE 0512  0.499 0.501 0.511
ARTime 0.973  0.546 0.995 0.458
DeepLog 095  0.836 0.975 0.783

7B LLM feedback (AUC: 0.962) showed slightly lower
performance, while KNN-CAD (AUC: 0.607) and EXPOSE
(AUC: 0.501) again showed very poor performance.

Overall, the VMFT-LAD model with the GPT 3.5 turbo
LLM consistently outperforms other models across all
datasets and under both evaluation criteria, with near-perfect
AUC values, demonstrating its effectiveness in proactive VM
fault tolerance using log anomaly detection. The DeepLog
model showed very good performance across the board. The
VMFT-LAD without feedback and with other LLMs, such
as Cyrax 7B and Emerton Monarch 7B, exhibit promising
performance. The HTM and ARTime models perform well in
certain scenarios, while KNN-CAD and EXPOSE generally
struggle across the datasets and evaluation criteria.

D. EVALUATING MODEL PERFORMANCE: NUMENTA
ANOMALY BENCHMARK

The Numenta Anomaly Benchmark (NAB) [48] is a bench-
mark suite designed to evaluate the performance of algo-
rithms for detecting anomalies in streaming data. It provides
a standardized framework for comparing the effectiveness
of different univariate anomaly detection models. The NAB
scores serve as a quantitative measure of a model’s ability to
identify anomalies while minimizing false positives and false
negatives accurately. The NAB score is suitable for evaluating
the models in this case because NAB gives a high score
for early true anomaly detection. Additionally, it penalizes
late predictions and false positives with negative marks using
a sigmoidal scoring function [48]. Fig. 5 shows how the
NAB scoring function scores the predictions of a model
(marked as a cross) relative to their position to the anomaly
window. The first true prediction within the anomaly window
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(green cross) gets a positive score, while all the other false
positives (red crosses) get negative scores according to their
closeness to the anomaly window.

NAB calculates three different scores: Standard, Reward
Low FP, and Reward Low FN. The Standard score is a
balanced score that accounts for both false positives and false
negatives. The Reward Low FP score emphasizes minimizing
false positives, making it suitable for scenarios where false
alarms are more costly. Conversely, the Reward Low FN score
prioritizes minimizing false negatives, which is beneficial
when failing to detect an anomaly is more critical.

We modified the original NAB repository by adding our
datasets, including the benign dataset and labels according
to the NAB specification. The anomaly window is defined
as the pre-failure region (after fault injection) and the failure
region (after the failure point) for the relaxed criterion, and for
the strict criterion, we only consider the pre-failure region as
the anomalous window and removed the post-failure region
from the result set to allow NAB to score only the early pre-
failure detections. The modified NAB repository is available
publicly.?

Table 4 presents NAB score results under both Criteria-1:
Relaxed and Criteria-2: Strict.

Under relaxed Criteria-1, the VMFT-LAD model with
GPT 3.5 turbo LLM feedback achieves outstanding NAB
scores across all three metrics (around 98), demonstrating
its overall effectiveness in accurately identifying anomalies
while maintaining a balance between false positives and false
negatives. Among the other models, ARTime exhibits the
next best performance (standard score: 73.98), followed by

3Modified NAB repository: https://github.com/CloudnetUCSC/NAB
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TABLE 4. NAB scores for evaluated models.

Model NAB Score
Standard Reward Low FP  Reward Low FN

VMFT-LAD  98.16 97.77 98.44
n HTM  66.63 61.04 71.64
‘5 KNN-CAD 32.13 -22.05 4232
'S EXPOSE 4232 37.07 67.33
ARTime  73.98 56.92 77.89
DeepLog 71.82 43.75 76.06
VMFT-LAD 90.74 90.36 89.67

% HTM 2152 16.22 3.13
‘5 KNN-CAD 1.47 -54.94 0.21
LE) EXPOSE  52.50 18.42 56.17
ARTime  48.53 26.99 46.55
DeepLog 71.50 43.30 75.79

the DeepLog model (standard score: 71.82), and the HTM
model (standard score: 66.63). KNN-CAD and EXPOSE
show relatively poorer performance even under this less strict
criterion.

Under stricter Criteria-2, which requires anomaly detection
before the failure point, the VMFT-LAD model continues to
outperform the others with a standard score of 90.74. The
DeepLog model maintains its performance with a standard
score of 71.5. The other models, however, exhibit a significant
drop in performance under this criterion, with very low scores
across all three metrics.

TABLE 5. Average false positive rate and early detection rate at the best
threshold.

Model False positive rate  Early detection rate
VMFT-LAD 0.02% 96.28%
HTM 0.07% 62.08%
KNN-CAD 0.74% 76.58%
EXPOSE 0.39% 85.13%
ARTime 0.24% 78.25%
DeepLog 0.37% 100%

The results in Table 5 present the average false positive rate
and average early detection rate, which is the true positive
rate under the stricter Criteria-2 for the evaluated models.
The results are calculated using the best threshold for each
model identified by the NAB optimizer across all datasets,
including the benign dataset. VMFT-LAD shows the lowest
false positive rate (0.02%) and a high early failure indicator
detection rate (96.28%). Notably, the DeepLog model shows
a 100% early detection rate; however, its false positive rate is
relatively high at 0.37%.

These results highlight our model’s effectiveness in
proactive VM fault tolerance using log anomaly detec-
tion, which is the early detection of anomalies before
failures occur while minimizing the false positives that
may lead to service degradation due to unnecessary
VM migrations.
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E. MODEL EXECUTION TIME

Fig. 6 presents the average execution time required by each
model to process a single record and determine whether it is
anomalous or not. This metric is essential in determining the
models’ practicality for real-time anomaly detection.

DeepLog

ARTime ] 0.2205
EXPoSE

KNN-CAD

vMFT-LAD fJ0.2746

0 2 4 6 8
Record processing time (ms)

FIGURE 6. Average execution time to process a record (Lower the better).

The VMFT-LAD without LLM feedback and ARTime
models exhibit impressive average execution times.
KNN-CAD, EXPOSE, and DeepLog have moderate execu-
tion times, and the HTM model has a comparatively higher
average execution time.

The following are the actual log rates observed in the
collected server log data: The average time difference
between two consecutive records is 163.966 milliseconds,
and the average time between all records is 6.053 seconds.
Even the slowest model, HTM, with an average execution
time of 8.7557 milliseconds, can comfortably process records
at these log generation rates.

All the evaluated models demonstrate sufficient com-
putational efficiency to handle online anomaly detection
in our server environment. However, for scenarios with
exceptionally high log generation rates, the VMFT-LAD
model without LLM feedback and ARTime can be the most
suitable choice due to their sub-millisecond execution times.

VI. HYPERPARAMETER TUNING

In this section, we show how the hyperparameters of our
model VMFT-LAD affect its performance. Fig. 7 illustrates
the impact of varying the training period (M) and subse-
quence length (m) on the True Positive Rate (TPR) and False
Positive Rate (FPR) of the anomaly detection process.

Fig. 7a depicts the effect of M and m on the TPR.
As evident from the plotted surface, increasing the training
period length (M) has a minimal impact on the TPR; however,
as depicted by Fig. 7b, increasing M reduces the FPR, which
is the expected behavior, because the model will have a larger
benign context from the training data.

The subsequence length (m) plays a significant role in
determining the TPR. For smaller values of m, the TPR is
lower, indicating that the model may struggle to capture the
anomalous patterns when considering shorter subsequences.
As m increases, the TPR steadily improves, reaching its
maximum value for m > 4. This behavior is expected,
as longer subsequences provide more contextual information,
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length () on False Positive Rates.

FIGURE 7. Impact of hyperparameter change on anomaly detection performance.

allowing the model to identify anomalies within the time
series data effectively.
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FIGURE 8. Impact of the similarity threshold (y) over the average record
processing time. The average record processing time using a list-based
implementation is added for comparison.

Fig. 8 presents the impact of the similarity threshold (n) on
the record processing time of VMFT-LAD. The results were
measured by running VMFT-LAD on a large benign dataset
with over 6000 data points to get an average execution time to
process a single data point. We set 6 <— 0.5, M <« 150, m <«
4 for the evaluation. As defined in the section IV-A above,
n < 6, so we set the n to range from 0 to 0.45 with a step
size of 0.05. The plot shows that the record processing time
decreases (execution speed increases) when 1 approaches 6.

n does not affect the TPR or the FPR of the model
because they are determined by the anomaly threshold 6.
Additionally, we included the average record handling time
for the regular list-based implementation of the subsequence
store. The execution speed of VMFT-LAD with the Max-
heap-based subsequence store is faster compared to the
list-based implementation, even when 7 is O (searches for
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an exact match with the minimum possible distance). This
is because the max-heap implementation searches according
to the order of the frequency of subsequences, while the
list-based implementation does a linear search.

From the results, we can clearly see that choosing the
similarity threshold closer to the anomaly threshold is better
for the execution speed of the model. The max-heap-based
implementation is 84.63% faster than the list-based imple-
mentation. But, even with the list-based subsequence store
implementation, VMFT-LAD is faster than most evaluated
models.

VII. DISCUSSION
In this section, we discuss the utility of log-based anomaly
detection in proactive VM fault tolerance via live migration
and our experience with fine-tuning LLMs for failure-related
log identification.

A. UTILITY OF ANOMALY DETECTION IN PROACTIVE VM
FAULT TOLERANCE

The effectiveness of proactive fault tolerance in virtual
machine environments relies on accurately predicting failures
well in advance, allowing sufficient time for VM migration
before the failure occurs. In this section, we evaluate the log
anomaly detection time of models in comparison to the failure
time of the VMs under each fault model, to assess their ability
in detecting failure in advance to allow sufficient time for VM
migration.

Table 6 presents the average early detection time before the
VM failure for each model across all our datasets. This early
detection capability is crucial for enabling timely migration
of VMs before failures occur. All the models performed
relatively well, except for the OOM dataset, where all the
models seemed to struggle to identify the failure early. This
may be due to a lack of early pre-failure indicators in the log
dataset for OOM failures.
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TABLE 6. Average detection time before total VM failure (minutes).

Model Dataset
HDD OOM  Buffer-10 CPU
VMFT-LAD  15.651 3.033 13.338 14.535
HTM  15.675 1.535 13.354 8.462
KNN-CAD 15901 2.012 12.073 12.555
EXPOSE  15.658  3.136 11.864 23.959
ARTime 15.674  4.057 13.337 13.120
DeepLog 15.675 4.376 13.354 23.959

To assess the feasibility of proactive migration, we com-
pare the failure prediction times with the actual VM migration
times observed. Fig. 9 illustrates the total migration time
for VMs of different sizes, ranging from 1 GB to 20 GB,
using three different migration techniques: Vanilla post-copy,
Vanilla pre-copy, and XBZRLE compression enabled pre-
copy [51]. We ran Memcached in the VMs when collecting
migration time data (Memcached is a high-performance
in-memory caching solution for databases). We allowed
Memcached to use up to 80% of the VM memory and
configured the Memaslap load generation tool to generate
the necessary database load to simulate real-world scenarios.
We chose Memcached because it is a real-world unified
workload that is CPU, memory, and I/O intensive.

Total Migration Time (s)

1 2 4 8 16 20
VM size (GB)

Vanilla Pre-copy ® Pre-copy w/ XBZRLE

B Vanilla Post-copy

FIGURE 9. The total migration time for migrating VMs with different
v-RAM sizes.

We can see that across all VM sizes, the post-copy
technique exhibits the lowest migration times. The XBZRLE
compression helps to reduce migration times in pre-copy
when the VM sizes are relatively large (>16 GB).

Fig. 10 shows the downtime experienced by VMs during
migration. The downtime is the period during which the
VM is paused to copy the final states of the VM to the
destination, and it is essential to minimize this duration
to maintain the quality of service. All the migration
methods across all VM sizes show relatively low downtimes
(40-255 ms). Specifically, the post-copy technique demon-
strates the lowest downtimes (10-45 ms) across all VM sizes.

Comparing the failure prediction times from Table 6 with
the migration times shown in Fig. 9, it becomes evident
that all the models provide sufficient lead time to facilitate
proactive VM migration before failures occur. For instance,
even in the case of the OOM dataset, where the VMFT-LAD
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FIGURE 10. The downtime for migrating VMs with different v-RAM sizes.

achieves an average detection time of 3.033 minutes, the
migration time for a 20 GB VM using the pre-copy technique
is around 45 seconds; migrating one large VM is sufficient to
avert the OOM failure of the VMs running in the server.

These results, combined with the previous evaluation
results, highlight the effectiveness of VMFT-LAD in enabling
proactive fault tolerance through timely VM failure pre-
diction and migration. The high early detection rate, low
FPR, and early detection times, combined with the migration
techniques available, ensure that VMs can be migrated to
alternative hosts before failures occur, minimizing service
disruptions due to failure.

B. EXPLORING LLM USAGE PARADIGMS

VMFT-LAD reduces false positives and continuously adapts
to changing logging patterns by integrating LLM feedback,
eliminating the need for human intervention in the VM failure
prediction process. For the LLM feedback, we have evaluated
several popular and high-performing LLMs using zero-
shot classification and few-shot learning with a few normal
state logs. These approaches gave promising classification
results as explained below (section VII-C). Additionally,
we attempted to fine-tune the distilBert [38] LLM using
Low-Rank Adaptation (LoRA) [52], utilizing only a subset of
the benign logs, adhering to our criterion of only using normal
state logs for training. However, the fine-tuned model did not
perform well in identifying failures and classified most failure
logs as normal.

C. COMPARING LLM PERFORMANCE

In this section, we compare the performance of LLMs used in
the evaluation of our model VMFT-LAD using AUC results
and the average false positive rates.

Table 7 presents the AUC results for the LLMs on each
dataset. Most of the models show relatively low AUC
results, around 0.5, except for the GPT 3.5 turbo model,
which demonstrates a near-perfect AUC score (0.999) for all
datasets, with the exception of the OOM dataset (AUC: 0.87).

Table 8 presents the False Positive Rate of the LLMs on
our datasets. The Falcon 7B, Cyrax 7B, and the Emerton
Monarch 7B models have similar FPR around 7-12%. The
Bart Large zero-shot classifier had the worst FPR at 17.49%.
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TABLE 7. Area Under the Curve (AUC) results for ROC curves of LLMs.

Models Dataset
HDD OOM Buffer-I0 CPU
Falcon 7B 0.517  0.499 0.505 0.534
n Cyrax 7B 0.506 0.5 0.501 0.515
5 Em. Monarch 7B 0.518  0.499 0.502 0.515
S Bart Large (0-Shot)  0.513  0.499 0.501 0.524
GPT3.5turbo  0.999  0.87 0.999 0.999
o Falcon 7B 0.517  0.499 0.487 0.534
& Cyrax 7B 0.506 0.5 0.501 0.515
G Em. Monarch 7B 0.518  0.499 0.502 0.515
'::) Bart Large (0-Shot)  0.513  0.499 0.501 0.524

GPT3.5turbo 0999  0.87 0.999 0.999

TABLE 8. Average false positive rate for LLMs.

Model False positive rate
Falcon 7B 7.95%
Cyrax 7B 8.78%
Emerton Monarch 7B 12.07%
Bart Large (Zero-Shot) 17.49%
GPT 3.5 turbo 0.05%

Impressively, the GPT 3.5 turbo model showed a very low
FPR of 0.05%. These results show that using few-shot
learning is much better for differentiating between a true VM
failure-indicating log and a normal but anomalous log.

The GPT 3.5 turbo model showed good AUC performance
and low FPR; when comparing this to using VMFT-LAD
in conjunction with the GPT 3.5 turbo model, we can
see that VMFT-LAD had an improvement over the results
of only using GPT 3.5 turbo model; specifically in the
case of the OOM dataset and the FPR (combined model
FPR: 0.02%)

The promising results for the GPT 3.5 turbo model raises
an intriguing possibility: could an LLM like GPT 3.5 turbo,
given adequate resources, be solely used for the VM failure
prediction task through log analysis? While the results are
promising, further research and analysis are necessary to
draw definitive conclusions. A significant challenge to this
approach lies in the latency issue. The time interval between
logs (163.9 ms) is substantially shorter than the LLM’s
response time (approximately 800 ms - 2 seconds), making
it impractical to query the LLM for each individual log
line. These results show how VMFT-LAD and an LLM
like GPT 3.5 turbo complement each other in creating a
highly effective and efficient log anomaly detector for VM
failure prediction. A practical implementation could involve
installing VMFT-LAD instances on each physical host in the
data center, with a single LLM instance serving requests for
anomalous log classification (differentiating between normal
and failure-related logs) from all deployed VMFT-LAD
instances across the hosts. This setup would balance the
strengths of both models while mitigating the latency
issues.
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D. PROPERTIES OF AN IDEAL VM FAILURE PREDICTOR
In this section, we show how our model aligns with the
properties of an ideal VM failure predictor, as outlined in the
introduction section.

The VMFT-LAD model exhibits several key characteris-
tics that make it an effective VM failure predictor:

1) Early identification of failures: As demonstrated in
the evaluation section above, our model successfully
identifies failures at an early stage while maintaining
a very low false positive rate.

2) Adaptability to changing environments: When the log
pattern changes in the host machine due to software
or hardware update, the previously learned ‘‘normal”
state of any anomaly detector must be updated;
otherwise the new normal state would be marked as
an anomaly. When VMFT-LAD identifies an abnormal
log sequence, it will consult an LLM to verify whether
it is a true anomaly (VM failure indicator) or normal
log unrelated to VM failure. If the anomaly is a normal
log, VMFT-LAD updates its internal state to adapt to
the new change.

3) Ability to identify unforeseen failure types: By training
only on the normal system state logs and identifying
anomalies, VMFT-LAD is inherently designed to
detect unforeseen failures, as all failure indicators are
anomalies.

4) Capability to work with highly imbalanced data: VM
failure data are highly imbalanced as an individual
server will be in the normal operational condition most
of the time, so the system will only have normal state
log data and failures are relatively very rare. Semi-
supervised models like VMFT-LAD can handle highly
imbalanced data, as they only train on one class (normal
class).

5) Minimization of false positives: VMFT-LAD effec-
tively minimizes false positives with the help of LLM
feedback.

6) Ability to work independently: Once deployed,
VMFT-LAD operates autonomously, requiring min-
imal human intervention in identifying VM failure-
indicating logs. This autonomy results in faster reaction
times when managing VM failure scenarios.

These properties demonstrate how VMFT-LAD functions
as a robust and efficient VM failure prediction system,
addressing key challenges in proactive fault tolerance.

VIIl. RELATED WORK

This section reviews related literature on VM proactive fault
tolerance using machine learning techniques to contextualize
our contributions and highlight the research gaps that our
work addresses.

A. PHYSICAL MACHINE FAILURE PREDICTION
Physical machine (server) failure prediction is an integral
part of VM fault tolerance because the physical machine
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failure will inevitably cause the VMs running on it to
fail. In large-scale cloud computing environments, physical
machine failures are inevitable, with studies indicating that
6-8% of servers experience at least one hardware issue
annually [43], [45]. Researchers have extensively explored
server failure prediction by leveraging historical resource
usage data and ML techniques. The common approach
involves training supervised ML models, such as random
forests [53], convolutional neural networks (CNNs) [10], and
bi-directional long short-term memory (LSTM) [54] models,
on labeled data obtained from system administrators.

One notable framework is MING [13], developed by
Microsoft Research, which employs LSTM and random
forest models on temporal data (performance, log rates,
OS events) and spatial data (server rack location, load-
balancer data), respectively, to predict server failures. MING
also incorporates a server ranking system to identify the most
failure-prone servers.

B. VIRTUAL MACHINE FAILURE PREDICTION

VM failures can be due to underlying physical server
failures or issues with software components like the host
OS, hypervisor, or guest OS. Traditional approaches to VM
fault tolerance involve employing redundant VMs [55], which
can be costly for cloud service providers. An alternative
strategy is to predict VM failures and proactively migrate
failure-prone VMs to other physical servers.

Similar to physical machine failure prediction, several
studies have focused on using supervised ML models, such
as LSTM, CNN, linear regression, support vector machines
(SVMs), and feed-forward neural networks (FNNs), on VM
resource usage data to identify failure-prone VMs for
proactive migration [11].

However, research on VM failure prediction using log
analysis remains relatively scarce. Most existing studies [10],
[11], [23] have primarily focused on utilizing physical
machine resource usage history, overlooking the potential
insights provided by VM and server logs. These logs contain
valuable information about VM behavior, performance, and
potential failure indicators, which can significantly enhance
failure prediction accuracy.

The framework proposed by Nam et al. [9] focuses on
predicting failures of Virtual Network Functions (VNFs) by
leveraging log data generated by the VNF application and the
VM. They employ word embedding using Google Word2Vec
[56] and a supervised CNN model for failure prediction. In a
subsequent work [8], the authors improved their approach by
utilizing the BERT tokenizer [33] for word embedding and a
CNN model for prediction. However, these studies have been
limited to specific types of VMs, such as VNFs, and have
not been applied to generic VMs commonly used in cloud
computing environments.

Most VM/server failure prediction frameworks [8], [9],
[10], [11], [23] discussed above employ supervised ML
models, which require human effort or other methods to
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label the data as normal or failure (pre-failure) classes,
and this approach is inefficient in large-scale systems
such as CDCs. Moreover, once such a model is deployed,
it may not function properly if the system experiences even
slight changes or faces unseen failure types, rendering it
ineffective in handling unforeseen failures. In real-world
scenarios, failure data are rare, making it impractical and
infeasible to identify all failures a priori to train a perfect
supervised model. Unsupervised or semi-supervised models
are preferred, as they can train only on the readily available
normal state of the system.

Additionally, an important factor that has been largely
disregarded in previous studies is the consideration of
the time required for VM migration. For successful VM
migration, it is imperative to identify the failure before
the total time it takes to migrate the VM to a healthy
physical machine. Unfortunately, most studies have neglected
to evaluate this aspect of their work.

As demonstrated by our evaluation results, our work
addresses these research gaps by providing a comprehensive
approach to fault tolerance of generic VMs through log
analysis. Our semi-supervised approach eliminates the need
for labeled data, while effectively identifying previously
unseen VM failure situations in real-time and adapting to
the changes in normal log patterns of the system. We have
also considered the VM migration timing requirements when
evaluating our approach.

IX. CONCLUSION

This paper presents VMFT-LAD, a semi-supervised log
anomaly detection model designed for proactive VM fault
tolerance. By combining the efficiency of our modified
Matrix Profile [18] with the log inference capability of
large language models (LLMs), VMFT-LAD addresses the
limitations of traditional approaches and enables early detec-
tion of potential failures, including unforeseen fault types,
while continuously adapting to changing log patterns with
minimal human intervention. Our comprehensive evaluation
of VMFT-LAD on several datasets exemplifies its superiority
over state-of-the-art real-time anomaly detection models.

While this work primarily focuses on log data analysis,
we are currently exploring future directions to further
improve the model’s capabilities. One promising direction
we are investigating is the integration of both resource usage
metrics and log data for more comprehensive VM failure
prediction. This approach has the potential to significantly
enhance the model’s predictive capabilities.

In conclusion, VMFT-LAD represents a meaningful step
forward in facilitating proactive VM fault tolerance using
log analysis, offering early and accurate failure prediction in
dynamic, complex cloud environments.
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